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SUMMARY: We present a radio-continuum detection of the well-known Wolf-Rayet star WR40 at
943.5 MHz using observations from the Evolutionary Map of the Universe (EMU) survey. We find that
the shell surrounding WR40, known as RCW 58, has a flux density of 158.91+15.8 mJy and the star
itself is 0.413+0.04 mJy. The shell size is found to be 9’X 6/, which matches well with the shell in Ha
and is similarly matched to the shell at 22 um in infrared. Using Gaia data, we derive a linear size of
7.32(1£0.34) X 4.89(£0.23) pc at a distance of 2.791+0.13kpc. We use the previous Australia Telescope
Compact Array (ATCA) observations at 8.64, 4.80, and 2.4 GHz to determine a spectral index of WR40,
which is estimated to be a = 0.80 & 0.11, indicating that the emission from the star is thermal.
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1. INTRODUCTION

Wolf-Rayet (WR) stars are late-stage stars, and
are often defined by their mass loss rate compared
to previous evolutionary stages (Nugis and Lamers
2000), creating outbursts of stellar material mainly
comprised of the star’s dominating element (Marston
1995). They are characterised by the elements dom-
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inating their spectra: either carbon, nitrogen, or
oxygen (Crowther 2007). The elemental composi-
tion of WR stars categorises them into three main
types: WC (carbon-rich), WN (nitrogen-rich), and
WO (oxygen-rich).

WRA40 is a well-known WNS8 type WR star
(Hamann et al. 2006) accompanied by a shell known
as RCW 58, which has also been studied extensively
(Hartquist et al. 1986). RCW 58 is unique, possess-
ing a non-uniform, irregular nature, likely caused by
interactions of the wind-driven ejecta with the Inter-
stellar Medium (ISM) (Hartquist et al. 1986, Marston
1995, Jiménez-Herndndez et al. 2021). WRAO0 is often
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linked to WR16 (Antokhin et al. 1995, Cichowolski
et al. 2020, Bradley et al. 2025a), another WN8 star.
They are similar, but WR40’s shell is quite irregular
and elliptical, whereas WR16’s is symmetrical and
circular (Marston 1995). WR stars are known to have
variability, with WR40 showing significant variability
compared to others (Gosset et al. 1989).

The EMU survey (Hopkins et al. 2025, Norris
et al. 2011, 2021) is mapping the entire southern sky
at 943.5 MHz using the Australian Square Kilome-
tre Array Pathfinder (ASKAP) (Hotan et al. 2021).
Owing to the telescope’s high sensitivity, we of-
ten detect low-surface brightness features that have
not been previously characterized. Some of these
objects are Supernova Remnants (SNRs); G305.4-
2.2 (Teleios; Filipovi¢ et al. 2025b), J0624-6948 (Fil-
ipovié et al. 2022, Sasaki et al. 2025), G288.8—
6.3 (Ancora; Filipovié¢ et al. 2023, Burger-Scheidlin
et al. 2024), G308.7+1.4 (Raspberry; Lazarevi¢ et al.
2024b), G312.6+ 2.8 (Unicycle; Smeaton et al. 2024);
a pulsar wind nebula (PWN) (Potoroo; Lazarevié
et al. 2024a); a reflection nebula (RNe) (Bradley
et al. 2025b); and possible candidates for the source of
the Ultra-high-energy Neutrino Event KM3-230213A
(Filipovié et al. 2025a).

2. DATA
2.1. ASKAP EMU

WRA40 and its shell have been seen in two EMU
observations. SB46948 observed the tile EMU_1136-
64 on December 12 2022, and SB54771 observed the
tile EMU_1050-64 on November 11 2023. These ob-
servations were reduced using the standard ASKAP
pipeline, ASKAPSoft, using multi-frequency synthe-
sis imaging, multi-scale cleaning, self-calibration and
convolution to a common beam size (Guzman et al.
2019). We then combined the observations into a
single image using the Miriad (Sault et al. 1995)
task IMCOMB. The final image was created using
equal weighting, resulting in a lower root mean square
(RMS) noise level of ~30 uJy beam™!. The final im-
age is shown in Fig. 1.

2.2. Other Data

We use values from the Gaia Data Release 3
(DR3) catalogue observations (Gaia Collaboration
et al. 2016b, 2023) to determine the distance to
WRA40, as well as determining the true size of the
radio shell surrounding it.

We also include observations from the SuperCOS-
MOS (656.281 nm Hambly et al. 2001) and Wide-
field Infrared Survey Explorer (WISE) (22 pm Wright
et al. 2010) sky surveys to compare the nebulosity
surrounding WRA40 at different wavelengths (Fig. 2).

The central star WR40 is seen in RACS-High
(1655.5 MHz Hale et al. 2021) as measured in the
Sydney Radio Stars Catalogue (Driessen et al. 2024).
It is also measured at 943.5 MHz, but because the
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Fig. 1: EMU 943.5 MHz radio-continuum image of WR40
and its surrounding shell RCW 58 at 15” resolution. Im-
age is linearly scaled.

integrated flux is much higher than our EMU flux,
we have elected to use none of the catalogue’s mea-
surements in our analysis.

3. RESULTS AND DISCUSSION

In relation to WRAO0, there are disparities between
parallax values in the previous literature (Perryman
et al. 1997, van Leeuwen 2007, Gaia Collaboration
et al. 2016a). We use the Gaia Data Release 3 (DR3)
parallax of 0.357240.0170 milliarcseconds (Gaia Col-
laboration 2020) to estimate a distance for WR40
to be 2.7940.13kpc. We use this distance and the
angular diameter measured from the EMU image
(9% 6) to determine the true size of the shell to be
7.3240.34%x4.8940.23 pc. Within this defined region,
we measure the flux density of the WR40 nebulosity
to be 158.9+15.8 mJy, taking a 10% error (Filipovié
et al. 2022, 2024). We also measure WRA0 itself and
find its flux density to be 0.41+0.04 mJy.

Using the previous ATCA measurements, we can
determine a spectral index for the star WR40. Lei-
therer et al. (1995) determines a flux density of
2.524+0.09mJy at 8.64 GHz, and 1.69+0.10mJy at
4.80GHz. Chapman et al. (1999) measured the
star WR40 at 2.40 GHz, estimating a flux density of
1.2140.13 mJy. The spectral index is defined as S «
v*, where S is flux density, v is frequency, and « is
spectral index (Filipovié¢ and Tothill 2021). Using the
three ATCA measurements and our EMU measure-
ment, we estimate a spectral index of & = 0.8040.11,
indicating thermal emission from the star. We obtain
a consistent measurement using only the 1999 obser-
vations, suggesting the radio variability isn’t signifi-
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Fig. 2: WRA40 and its surrounding shell RCW 58, both images are linearly scaled. — Left: WISE infrared image in
the W4 band at 22 ym. — Right: SuperCOSMOS Ha (656.281 nm) image.

cantly impacting our spectral index measurement, de-
spite WR40 showing variability at other wavelengths
(Gosset et al. 1989).

The emission seen at 943.5 MHz matches well with
SuperCOSMOS Ha and WISE 22 pm (Fig. 3), which
may indicate that the radio emission is thermal. We
have attempted to obtain additional radio data in
order to constrain the nature of the emission of the
shell, by measuring fluxes from the Sydney Univer-
sity Molonglo Sky Survey (SUMSS) (Bock et al. 1999)
and Parkes-MIT-NRAO (PMN) survey (Griffith and
Wright 1993). We also obtained flux measurements
detailed in Jiménez-Herndndez et al. (2021) from
ATCA observations. However, we were unable to de-
termine a reliable spectral index with any of these
observations due to the changes in sensitivity and the
low surface brightness of the source.

Prajapati et al. (2019) explored the non-thermal
nature of a WO-type WR star with a spectral index
of —0.81+0.1. We have applied this spectral index to
our EMU measurement to predict a SUMSS flux at
843 MHz. We predict an expected flux of ~173 mJy,
as this is brighter than the EMU emission, we would
expect a reliable detection. However, WR40 as seen
by SUMSS is almost indistinguishable from the back-
ground noise. This makes the thermal scenario more
likely, however, there is not enough evidence to rule
out the non-thermal scenario. It is possible that the
follow up observations with a sensitive telescope like
MeerKAT (Jonas and MeerKAT Team 2016) could
help constrain the nature of the emission.

Marston (1995) shows observations of [O 111] which
extends outside the radio shell toward the south-east

portion which does not appear in the EMU observa-
tion, but is partially seen in the WISE image. Dif-
ferences in the shell of the three observations may be
partially explained by differences in resolution, how-
ever there are some noticeable bright spots present
in the WISE (Fig. 2, Left) observation that are not
present in the EMU and SuperCOSMOS Ha obser-
vations. Due to the irregular shape of RCW 58, it is
likely that the wind from WRA40 is expanding into a
slower, non-uniform wind from the previous Red Su-
per Giant (RSG), or Luminous Blue Variable (LBV)
phase ((Meyer 2021))

4. CONCLUSION

We present a detection of the well known Wolf-
Rayet star WR40 and its shell RCW 58 at 43.5 MHz
using observations from the EMU survey. The shell
as seen by EMU is 9'x 6/, and using Gaia data, we
derive a true size of 7.32(£0.34) x 4.89(£0.23) pc at a
distance of 2.7940.13 kpc. We measure a flux density
for RCW 58 to be 158.94+15.8 mJy, and WR40’s flux
density as 0.41£0.04 mJy. Using the previous ATCA
observations, at 8.64, 4.80, and 2.4 GHz, we calculate
a spectral index o« = 0.80 + 0.11 for the star WR40
indicating that the emission from the star is ther-
mal. We are unable to determine a spectral index for
RCW 58 due to its low surface brightness and incon-
sistencies in the previous radio observations. Taking
observations with telescopes from the latest genera-
tion, such as MeerKAT, will help constrain the spec-
tral index and determine the nature of the emission
of RCW 58.
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Fig. 3: Four-colour composite image of WR40 and RCW 58. Red is WISE 22 pm, yellow is SuperCOSMOS He,
green is the EMU observation, and blue is the DSS2 red plate provided from Lasker et al. (1996).
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Opuzunastu HaywHY Pao

IIpeacraBmaMo TpBYy OETEKIUjy IMMO3HATE
Bong-Pajer 3Be3me m3 mame ranarxcuje WRA40
y pamuo-roHTHHYyMYy Ha 943.5 MHZ xopucrehu
EMY (Epoaynuona Mana Ywuusepsyma) mper-
sen meba. Hamam cMo ma mbycka Koja OKPY#KY-
je WRA40, rakobe mosmara u kao RCW 58, uma
ryctuHy ¢aykca on 1589 £ 15.8 mlJy 3a pas-
JUKY OJX caMe 3Be3le 4Yurja je TycTuHa (IIyKca
0.41 + 0.04 mJy. Beauuuna came JbyCkKe je TpO-
nemena Ha 9 X 6/, Wro je CAMYHO ONTUYKUM U
nappanpsenrM (Ha 22 pum) mMepemuma. Kopucte-
hu nonatke ca Gaia carenura u paHuje mpoIle-

meHy nanpuny onx 2.79 +0.13 kpe no came 3Be3ne,
U3pavyHaJId CMO Ja je JIMHeapHa BeJIWUUHA JbYC-
ke 7.32 (£0.34) x 4.89 (£0.23) pc. Tarkobe cmo
KOPUCTUJIM U IPETXOJHA PaIUO-KOHTUHYYM IIOC-
Marpama ca AyCTPalMjCKOr KOMIAKTHOI HU3a
reneckona (emr. ATCA) ma ¢pexsennmjama on
8.64, 4.80, u 2.4 GHz, a cBe ma Ou mpeunusHuje
OPOLEHUIN PAJUO-CIEKTPAJIHU WHAEKC, 3a KOju
cMo gpobunu Bpemmoct onm o = 0.80 + 0.11 xo-
ja yra3yje nma je eMHcHja KOja IOTHYE cCa caMe
Boa¢-Pajer 3Be3me TepMasiHOr mOpERIIA.
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