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SUMMARY: Listening to echoes has long been a way to estimate distances, a technique whose
backbone is the time delay. The gravitational field also creates a time delay, called Shapiro time delay,
that helps us extract some information from the field and is indeed due to the photon journey through
the field. Here, the ability of the Shapiro effect to distinguish naked singularities from non-naked ones
(black holes) is discussed. It is also inferred that this time delay may be hired to compare the various
types of singularities with different dimensions. Besides them, the possibility of detecting the rotation
of the assumed objects through surveying the gravitational time delay is also addressed.
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1. INTRODUCTION

Singularity is one of the attractive predictions
of general relativity (GR) (Poisson 2004, Hawking
and Penrose 2010). Although the Cosmic Censor-
ship Hypothesis (CCH) generally rejects the exis-
tence of naked singularity (NS), there is not a com-
mon agreement on CCH, and actually, NS physics
has a lot to say (Hawking and Penrose 2010). Con-
sequently, NS formation has attracted plenty of at-
tempts to itself (Janis et al. 1968, Yodzis et al. 1973,
Shapiro and Teukolsky 1991, Joshi and Dwivedi 1993,
Dwivedi and Joshi 1994, Christodoulou 1994, 1999,
Joshi 2009, 2012, Crisford and Santos 2017, Zhang
2017). Subsequently, distinguishing NS from black
holes (non-naked singularities, i.e. singularities quar-
antined from the surroundings by the event horizon)
appears as a serious task for physicists, a task that
is accomplished by studying various properties of NS
(Virbhadra and Ellis 2002, Gyulchev and Yazadjiev
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2008, Joshi et al. 2014, Liu et al. 2018, Shaikh and
Joshi 2019, Ziaie et al. 2022, Zhdanov and Stashko
2020, Stashko and Zhdanov 2021, Stashko et al. 2021,
2023).

Indeed, recent advances in the field of photograph-
ing black hole candidates further encourage us to
study NS and the differences with black holes. In
this regard, observational properties of naked singu-
larities have also been studied (Zhdanov and Stashko
2020, Stashko and Zhdanov 2021, Stashko et al. 2021,
2023). The Sagnac time delay also seems to be able to
distinguish black holes from NS (Ziaie et al. 2022). In
this setup, a satellite (as the sender/receiver) orbit-
ing the object (NS or black hole) is crucial, a serious
difficulty for the idea applicability, as such objects,
are very far from us. Therefore, another type of time
delay may be more useful for such studies, i.e. an
experiment that can be done remotely (without any
need to send a satellite to long distances).

The fourth test of general relativity, established
by I. I. Shapiro (Shapiro 1964), is based on the time
delay of light rays passing through the gravitational
field. In addition to being used to check GR in the
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Solar system (Shapiro et al. 1968, 1971, Biswas and
Mani 2004), this effect is also helpful in verifying i)
modified gravity theories (Asada 2008, Boran et al.
2018, Edelstein et al. 2021, Dyadina and Labazova
2022), generalized uncertainty principle (Ökcü and
Aydiner 2021), ii) equivalence principle (Desai and
Kahya 2018, Boran et al. 2019, Minazzoli et al. 2019,
Kahya and Desai 2016), iii) the number of space-
time dimensions (Monteiro and Lemos 2017), and
studying the Pulsars (Desai and Kahya 2018, La-
guna and Wolszczan 1997, Desai and Kahya 2016,
Pössel 2021, Ben-Salem and Hackmann 2022, Hack-
mann and Dhani 2019, Abbott et al. 2017). Fortu-
nately, unlike the Sagnac effect, this experiment does
not need to send a satellite and hence is possible
remotely. Moreover, although picosecond has been
reported as the accuracy order of Shapiro measure-
ment (Will 2014), it seems that the next generation of
gravitational detectors shall significantly increase the
accuracy (Ballmer et al. 2010, Sullivan et al. 2020).
The negative Shapiro time delay called the gravita-
tional time advancement also happens when the light
rays pass through a weaker gravitational field com-
pared to the field at the observer’s place, and it is
predicted that the modern versions of the Michelson-
Morley experiment shall measure this time advance-
ment (Bhadra et al. 2023).

Indeed, although the Schwarzschild spacetime is
the most general spherically symmetric vacuum solu-
tion and a simple solution, it is the backbone of our
understanding of many phenomena like orbits and
thermodynamics of black holes motivating physicists
to study this metric and its various generalizations
(Wiltshire et al. 2009, D’Inverno 1992, Chakrabarty
and Tang 2023). Employing the Schwarzschild met-
ric and some generalized forms of this spacetime in-
cluding the Bardeen, Reissner-Nordström, and Ayón-
Beato-Garćıa metric, it seems that the Shapiro time
delay can distinguish these black holes from each
other (Junior et al. 2023). On the other hand,
to find constraints on the deviations from spheri-
cal symmetry (SS), focusing on the γ-metric (a non-
spherically generalization of the Schwarzschild metric
that, depending on the value of γ, can also present
NS), the Shapiro time delay has been investigated
(Chakrabarty and Tang 2023). The obtained time
delay is equal to that of Schwarzschild meaning that
the Shapiro time delay cannot be used to constrain γ,
and hence, distinguish solutions with different γ (the
criterion of deviation from SS). Therefore, it seems
that it is not possible to distinguish NS from a black
hole (even the simplest black hole solution i.e. the
Schwarzschild black hole) by comparing the corre-
sponding Shapiro time delays.

A long way has been traced to find the rotating
version of the Schwarzschild geometry called Kerr
metric which also plays a vital role in discovering
the secrets of various phenomena (Wiltshire et al.
2009). Since the Schwarzschild metric is a vacuum
solution, it is then obvious to look at all other black

holes as its extensions. The Janis-Newman-Winicour
(JNW) metric and its rotational version are two well-
studied generalizations of the Schwarzschild and Kerr
spacetimes, respectively (Janis et al. 1968, Gyulchev
and Yazadjiev 2008). They can also include NS
(Janis et al. 1968, Gyulchev and Yazadjiev 2008),
and attract a lot of attention (see Refs. Janis et al.
1968, Virbhadra and Ellis 2002, Gyulchev and Yazad-
jiev 2008 and their citations). In five dimensions,
the Myers-Perry (MP) metric is an extension of the
Kerr black hole that reduces to the Kerr geometry
whenever a 4-dimensional spacetime is taken into
account. Correspondingly, the 4 and 5-dimensional
Schwarzschild metrics are also recoverable if the zero
limit of angular momentums is applied (Myers and
Perry 1986). In summary, the background and im-
portance of these geometries requires that they be
studied.

Here, our first aim is to show the power of the
Shapiro test in distinguishing black holes from NSs.
To this end, the JNW metric (Janis et al. 1968) and
its rotating version (Gyulchev and Yazadjiev 2008)
are studied in the subsequent sections, respectively.
The possibility of verifying rotation in the fifth di-
mension shall be studied in the fourth section by em-
ploying the MP metric (Myers and Perry 1986). A
summary is also provided at the end.

2. SHAPIRO TIME DELAY IN JNW
SPACETIME

In the presence of the scalar field Φ(= q
2b
√
π

ln(1−
b
r )) with charge q and mass M , the JNW metric is
obtained as:

ds2=−Hνdt2 +
dr2

Hν
+H1−νr2(dθ2 + sin2(θ)dφ2), (1)

in which H = 1 − b
r , ν = 2M

b , and b =

2
√
M2 + q2 (Janis et al. 1968, Virbhadra and Ellis

2002). The Schwarzschild spacetime is covered at the
appropriate limit of q = 0 (or, ν = 1). The space-
time represents a singularity at r = b for q 6= 0 and
has the photon sphere if 1/2 < ν ≤ 1 (Janis et al.
1968, Virbhadra and Ellis 2002). Following the exis-
tence and absence of the photon sphere, a singularity
is called strong NS if 0 ≤ ν ≤ 1/2, and it is called
weak NS on the condition that 1/2 < ν < 1, respec-
tively (Virbhadra and Ellis 2002). Indeed, it is easy
to calculate the surface area at r = b through:

A =

∫ θ=π

θ0=0

∫ φ=2π

φ0=0

[
H1−νr2

]
r=b

dθdφ = 0, (2)

for 0 ≤ ν < 1 meaning that r = b is an NS.
Fig. 1 displays a photon sent from point P towards

E, while the path PE has the closest vertical distance
µ from the object O (D’Inverno 1992) whose surroun-
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Fig. 1: Light ray moves towards E through the path PE.

ding spacetime is described by the JNW metric. In
this manner, for a small displacement dx, we have:{dr= x√

x2+µ2
dx

dφ= µ

x2+µ2
dx

⇒ dφ =
µ

r
√
r2 − µ2

dr. (3)

Thus, since for a light ray (ds2 = 0) on the θ = π
2

plane

Hνdt2 =
dr2

Hν
+H1−νr2dφ2, (4)

one can easily use Eq. (3) to find:

dt2 = H−2ν
[
1 +

µ2

r2 − µ2
H
]
dr2, (5)

as the time delay of a photon passing the path of
PE in the presence of an object whose spacetime is
described by the JNW metric. At long distances from
O, one can approximate:

dt2 ' r2

r2 − µ2

[
1 +

2b

r
ν − bµ2

r3
− 2b2µ2

r4
ν
]
dr2, (6)

leading to:

dt ' rdr√
r2 − µ2

[
1+

2M

r
− µ2

r2
(
1

r
+

4M

r2
)
√
M2 +q2

]
,

(7)

where assuming b
r � 1, the Taylor expansion has

been used (for example, we have H−2ν ' 1 + 2νb
r )

and terms including powers upper than ( 1
r )4 are ig-

nored. In fact, unlike Ref. D’Inverno (1992), here,
the ( 1

r )4 term is calculated and the Schwarzschild re-
sult is also obtainable by adopting q = 0 (or equally,
ν = 1) (D’Inverno 1992). Accordingly, the discrep-
ancy with the Schwarzschild case emerges in terms
including q. It is apparent that dt decreases as q
increases meaning that, for the same dr, NS pro-
duces less dt compared to the Schwarzschild black
hole, and accordingly, those NSs that have the pho-
ton sphere, generate more time delay rate compared
to those without the photon sphere.

A Shapiro time delay measurement helps us con-
fine and estimate the value of q. To show it, up to the
first order of expansion, one can write Eq. (7) as dt ∼

dtS − q2δt, where dtS ≡ dt
∣∣
q=0

(the Schwarzschild

case) and δt ≡ µ2dr

2Mr2
√
r2−µ2

(1 + 4M
r ). Now, con-

sider an object with mass M and a measurement
with uncertainty A reporting t =

∫
dt for the time

delay. If the object is supposed to be a Schwarzschild
black hole, then mathematical calculations give us
tS =

∫
dtS . In this manner, if |t − tS | < A, then it

can be said that with the accuracy 1−A, the object
is a Schwarzschild black hole.

On the other hand, |t− tS | < A can also be used
to find an upper bound on the value of q as q2 < A∫

δt
.

Therefore, by increasing the precision of the setup,
one can find a more accurate upper bound on q (or
equally, one can find the value of q with more cer-
tainty). In this line, it is worthy to mention that al-
though the current detectors have also significant pre-
cision i.e. A ∼ O

(
10−12

)
s (Will 2014), the next gen-

eration of gravitational wave detectors equips us with
more accurate measurements (Ballmer et al. 2010,
Sullivan et al. 2020).

3. ROTATING 4-DIMENSIONAL METRIC

The geometry of spacetime including a rotating
object (the rotational version of the JNW metric) is
described as (Gyulchev and Yazadjiev 2008)

ds2 = −h1−νρ(
dr2

∆
+ dθ2 + sin2 θdφ2) + (8)

hν(dt− a sin2 θdφ)2 + 2a sin2 θ(dt− a sin2 θdφ)dφ,

where:

h = 1− br

ρ
,

ν =
M√

M2 + q2
=

2M

b
,

∆ = r2 + a2 − br,
ρ = r2 + a2 cos2 θ, (9)

and the scalar field Φ takes the form:

q

2b
ln(1− br

ρ
). (10)

In the above expressions, q and a = J/M are the
scalar charge and angular momentum per mass, re-
spectively, while J denotes the angular momentum,
and the JNW case is easily recovered at the J = 0
limit. It is reduced to the Kerr and Schwarzschild
solutions for q = 0(≡ ν = 1) and a = q = 0, respec-
tively. For other values of ν (0 < ν < 1), the line ele-
ment Eq. (8) includes a naked singularity (Gyulchev
and Yazadjiev 2008).

Now, considering the approach of the previous sec-
tion, one reaches:
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hνdt2 +
2µa

r
√
r2 − µ2

(1− hν)drdt+ (11)

[
µ2a2(hν − 2)

r2(r2 − µ2)
− (

µ2

r2(r2 − µ2)
+

1

∆
)h1−νρ]dr2 = 0.

for the photon moving on the plane θ = π/2, and
easily, one can recover Eq. (5) at the appropriate limit
a = 0 leading to h = H. Of course, whenever θ =
π/2, we always have h = H (ρ = r2) and thus:

2µa

r
√
r2 − µ2

(h−ν − 1) ' 4Mµa

r2
√
r2 − µ2

≡ −Θ,

∆ ' r2 + a2, (12)

(
µ2h1−2νρ

r2(r2 − µ2)
+
h1−2νρ

∆
) '

(1− bµ2

r3
− (r2 − µ2)a2

r2(r2 + a2)
)
r2h−2ν

r2 − µ2
,

µ2a2(hν − 2)

hνr2(r2 − µ2)
'

− µ2a2

r2(r2 − µ2)
(1 +

2νb

r
) ' − µ2a2

r2(r2 − µ2)
h−2ν ,

whenever b
r � 1. This finally gives the coefficient of

dr2 as:

− h−2νr2

r2 − µ2

(
1− bµ2

r3
− f(a)

)
' − r2

r2 − µ2

[
− bµ2

r3

(1− f(a))(1 +
2b

r
ν)− 2b2µ2

r4
ν

]
≡ −α,

f(a) =
a2

r2 [1− µ2

r2 (2 + a2

r2 )]

1 + a2

r2

, (13)

compared to Eq. (6) to see that, at this level of ap-
proximation, the effects of a are stored into f(a).
Therefore, at this limit, Eq. (11) takes the form
dt2 − Θdrdt − αdr2 ' 0 (the alternative of Eq. (6))
that eventually renders:

dt '
[√

α+
Θ( Θ

4
√
α

+ 1)

2

]
dr,

√
α ' r√

r2 − µ2

[
1− f(a)

2
+ (1− f(a))

2M

r

− µ2

r2
(
1

r
+

4M

r2
)
√
M2 + q2

]
, (14)

as the counterpart of Eq. (7) whenever a 6= 0 and
of course provided that f(a) � 1. The plausibil-
ity of the latter condition is a reflection of our great
distance from O in agreement with i) the primary
assumption b/r � 1 and also, ii) the fact that such
objects are very far from us. Indeed, it is the only
solution of dt2 − Θdrdt − αdr2 ' 0 that produces

Eq. (7) at the limit of a = 0. Thus, the ability
of the Shapiro time delay in detecting rotation in
4-dimensional spacetime as well as distinguishing a
rotating NS from a rotating black hole is deduced.

4. THE MP SPACETIME

One of the Universe’s mysteries is its number of
dimensions which seems searchable using the Shapiro
time delay (Monteiro and Lemos 2017). Another puz-
zle is the method of detecting motions in higher di-
mensions when we do not have direct access to the
higher dimensions. Here, focusing on the MP metric,
we are going to provide an answer by studying the ef-
fects of such a movement on the Shapiro time delay.
The MP geometry is (Myers and Perry 1986)

ds2 = −dt2 +
M(dt+ a sin2 θdφ+ β cos2 θdψ)2

r2 + a2 cos2 θ + β2 sin2 θ

+
r2(r2 + a2 cos2 θ + β2 sin2 θ)

(r2 + a2)(r2 + β2)−Mr2
dr2 (15)

+ (r2 + a2) sin2 θdφ2 + (r2 + β2) cos2 θdψ2

+ (r2 + a2 cos2 θ + β2 sin2 θ)dθ2,

where β is related to the angular momentum of fifth
dimension.

For β = a = 0, the five-dimensional Schwarzschild
solution, i.e.

ds2 = −(1− M

r2
)dt2 +

dr2

1− M
r2

(16)

+ r2(dθ2 + sin2 θdφ2 + cos2 θdψ2),

is achieved. Following the approach of the previous
section, one finds:

dt2 = (1− M

r2
)−2
[
1 +

µ2

r2 − µ2
(1− M

r2
)
]
dr2, (17)

as the Shapiro time delay of a 5-dimensional
Schwarzschild black hole whenever θ = π/2 and
dψ = 0. At long distances from O (or equally,
M/r � 1), one easily reaches:

dt2 ' r2

r2 − µ2
[1 +

2M

r2
− Mµ2

r4
]dr2, (18)

⇒ dt ' rdr√
r2 − µ2

[1 +
M

r2
− Mµ2

2r4
],

that clearly explains if the Shapiro time delay of a
Schwarzschild candidate obeys this equation instead
of the q = 0 case of Eq. (7), then one can claim
that the Universe has 5 dimensions. Compared to
Eq. (7), it is seen that 1/r3 does not appear here, a
fact that originated from the M/r2 term in the metric
Eq. (17) (for the Schwarzschild case, we have M/r).
Moreover, it should be noted that the origin of r−4
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also differs from that of this term in Eq. (7) as their
coefficients differ. Finally and as a preliminary check,
if we only want to keep the first two terms

(
1 + M

r2

in this equation, and 1 + 2M
r in Eq. (7)

)
, then it is

enough to replace M/r2 and 2M/r with each other to
see that the corresponding time delays are mutually
recovered, a net reflection of the relationship between
the corresponding metrics (Eqs. (5) and (17)).

A three-dimensional subspace of metric Eq. (15)
with θ = π/2 and ψ = 0 gives the geometry:

ds2 = −(1− M

r2 + β2
)dt2 +

2Ma

r2 + β2
dtdφ (19)

+
r2(r2 + β2)

(r2 + a2)(r2 + β2)−Mr2
dr2

+ (r2 + a2 +
Ma2

r2 + β2
)dφ2,

leading to:

0 = −(1− M

r2 + β2
)dt2 +

2Maµ

r(r2 + β2)
√
r2 − µ2

dtdr

+
[
(r2 + a2 +

Ma2

r2 + β2
)

µ2

r2(r2 − µ2)

+
r2

r2 + a2 − Mr2

r2+β2

]
dr2, (20)

when one uses Eq. (3) and considers a photon (ds =
0). Clearly, Eq. (17) is produced for a = β = 0, and
additionally, even if the object M does not rotate
in four dimensions (a = 0), then the existence of the
fifth dimension rotation still contributes to the results
on the condition that β 6= 0. Hence, the detection
of rotation in higher dimensions through the Shapiro
effect is possible. When a = 0 and β 6= 0, the solution
is:

dt ' rdr√
r2 − µ2

[1 +
M

r2 + β2
− Mµ2

2r2(r2 + β2)
], (21)

where M
r2+β2 � 1 has been assumed. Therefore, rota-

tion in the fifth dimension is verifiable using this ef-
fect. Clearly, it also reduces to Eq. (18) when β = 0.
For the β = 0 case (when a 6= 0), as the coeffi-
cient of dtdr in Eq. (20) is not zero, by following
the approach that led to Eq. (14), one finally obtains
dt2 − ϕdrdt− εdr2 ' 0 yielding:

dt '
[√

ε+
ϕ(1 + ϕ

4
√
ε
)

2

]
dr, (22)

√
ε ' r√

r2 − µ2

[
1− F (a)

2
+ (1− F (a))

M

r2
− Mµ2

2r4

]
,

as the only solution that recovers Eq. (18) at the limit

a = 0. Here, ϕ = 2Maµ

r3
√
r2−µ2

and:

F (a) =
a2

r2

(
1− µ2

r2

[
2 + a2

r2 −
M
r2

]
1 + a2

r2 −
M
r2

)
, (23)

and thus ϕ = F (a) = 0 for a = 0.
Generally, when a, β 6= 0, long calculations lead

to dt2 − ψdrdt−Ndr2 ' 0 and thus:

dt '
[√
N +

ψ(1 + ψ

4
√
N )

2

]
dr, (24)

where:

√
N ' r√

r2 − µ2

[
1− F(a)

2
+
M(1−F(a))

r2 + β2

− Mµ2

2r2(r2 + β2)

]
,

ψ =
2Maµ

r(r2 + β2)
√
r2 − µ2

, (25)

F(a) =
a2

r2

(
1− µ2

r2

[
2 + a2

r2 −
M

r2+β2

]
1 + a2

r2 −
M

r2+β2

)
.

Clearly, Eqs. (21) and (22) are obtained at the appro-
priate limits a = 0 and β = 0, respectively. Of course,
comparing Eqs. (21) and (18), it is understood that
one could have achieved this result by replacing M/r2

with M
r2+β2 in Eqs. (22) and (23).

In summary, while Eq. (21) implies on the im-
plication of the rotation in the fifth dimension of the
Shapiro time delay, difference between F (a) and f(a)
clearly shows that even the existence of the fifth di-
mension affects the time delay (β = 0). Indeed, as
it is emphasized by the information stored in F(a),
these effects become more tangible when β 6= 0. This
achievement is strengthened by the point mentioned
after Eq. (18), where the emergence of M/r2 in-
stead of M/r in the time delay of a five-dimensional
Schwarzschild spacetime has been argued, a feature
again confirmed by comparing Eqs. (22) and (14)
with each other.

5. CONCLUSION

Depending on the metric, it is possible to distin-
guish NSs from black holes via the gravitational time
delay (the Shapiro effect). Moreover, the possibil-
ity of verifying the existence of extra dimensions and
detecting rotation in higher dimensions through the
Shapiro time delay has also been studied. The results
imply the ability of this effect in such investigations.
Indeed, comparing Secs. (III) and (IV) shows that
this effect can even be used to compare objects of
various dimensions.

Therefore, we can hope that the use of the Shapiro
time delay and such fundamental experiments shall
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help us analyze the dimensions of the universe and
its contents. Finally, it is worthwhile to mention that
challenging the ideas presented here by different data
such as GW could be an interesting topic for future
projects.
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Originalni nauqni rad

Radarsko osluxkivaǌe odjeka se dugo ko-
ristilo za procenu ugaonog rastojaǌa, a u pi-
taǌu je metoda koja se zasniva na vremenskom
kaxǌeǌu signala pri prolasku kroz gravita-
ciono poǉe masivnog tela, poznata pod nazi-
vom Xapirovo vremensko kaxǌeǌe. Ovaj efe-
kat nam poma�e da izvuqemo odre�ene infor-
macije o gravitacionom poǉu, a uzrokovan je
putovaǌem fotona kroz ovo poǉe. Ovde se ras-
pravǉa o mogu�nosti da se Xapirov efekat

koristi u razlikovaǌu neskrivenih singula-
riteta od onih koji su skriveni (crne ru-
pe). Zakǉuqeno je da ovo vremensko kaxǌe-
ǌe mo�e da se iskoristi za upore�ivaǌe raz-
liqitih vrsta singulariteta i ǌihovih raz-
liqitih dimenzija. Osim toga, razmatrana je
mogu�nost otkrivaǌa rotacije crnih rupa na
osnovu posmatraǌa gravitacionog vremenskog
kaxǌeǌa.
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