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SUMMARY: In recent years, the study of the dynamics induced by the invariant
manifolds of unstable periodic orbits in nonlinear Hamiltonian dynamical systems
has led to a number of applications in celestial mechanics and dynamical astronomy.
Two applications of main current interest are i) space manifold dynamics, i.e. the
use of the manifolds in space mission design, and, in a quite different context, ii) the
study of spiral structure in galaxies. At present, most approaches to the computa-
tion of orbits associated with manifold dynamics (i.e. periodic or asymptotic orbits)
rely either on the use of the so-called Poincaré - Lindstedt method, or on purely
numerical methods. In the present article we briefly review an analytic method
of computation of invariant manifolds, first introduced by Moser (1958), and de-
veloped in the canonical framework by Giorgilli (2001). We use a simple example
to demonstrate how hyperbolic normal form computations can be performed, and
we refer to the analytic continuation method of Ozorio de Almeida and co-workers,
by which we can considerably extend the initial domain of convergence of Moser’s
normal form.
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1. INTRODUCTION

The dynamical features of the invariant man-
ifolds of unstable periodic orbits in nonlinear Hamil-
tonian dynamical systems is a subject that has at-
tracted much interest in recent years, due to a num-
ber of possible applications in various problems en-
countered in the framework of celestial mechanics
and dynamical astronomy.

The possibility to exploit the invariant mani-
folds of unstable periodic orbits in the neighborhood
of the collinear libration points of the Earth - Moon,
or the Earth - Sun system, in order to design low
cost space missions, constitutes a new branch called
space manifold dynamics. The reader is deferred to
Perozzi and Ferraz-Mello (2010), and in particular
to the review by Belló et al. (2010) in the same vol-

ume, or to Gómez and Barrabes (2011), for detailed
reviews and a comprehensive list of references.

In a quite different context, the invariant man-
ifolds of unstable periodic orbits in the co-rotation
region of barred galaxies have been proposed as pro-
viding a mechanism for the generation and/or main-
tenance of spiral structure beyond co-rotation (Voglis
et al. 2006, Romero-Gomez et al. 2006, 2007, Tsout-
sis et al. 2008, 2009). Fig. 1 (Tsoutsis et al. 2008)
shows an example of this mechanism. This figure
shows the superposition of the unstable invariant
manifolds of seven different unstable periodic orbits
covering a domain from about 0.8 to twice the co-
rotation radius in an N-body model of a barred-spiral
galaxy. It is a basic fact that the unstable manifolds
of one periodic orbit cannot have intersections either
with themselves or with the unstable manifolds of
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Fig. 1. The projection in configuration space of the unstable invariant manifolds of seven different unstable
periodic orbits in the co-rotation region of a N-body model of a barred-spiral galaxy (see Tsoutsis et al. 2008
for details).

any other periodic orbit of equal energy. Due to
this property, the manifolds of different periodic or-
bits develop in nearly parallel directions in the phase
space, and their lobes penetrate one into the other,
forming a pattern called the ‘coalescence’ of invari-
ant manifolds (Tsoutsis et al. 2008). We then find
that the latter has the characteristic shape of a bi-
symmetric set of spiral arms.

Viewed from a dynamical systems point of
view, the invariant manifolds provide an underlying
structure in a connected chaotic domain, which in-
fluences the laws by which the chaotic orbits evolve.
In particular, the manifolds play a key role in charac-
terizing the phenomenon of chaotic recurrences. The
dynamical consequences induced by the geometric
structure of the invariant manifolds are emphasized
already in the work of H. Poincaré (1892). However,
starting with Contopoulos and Polymilis (1993), an
investigation of the manifolds’ lobe dynamics and re-
currence laws has been a subject of only relatively
recent studies (see Contopoulos 2002 for a review).

The computation of the invariant manifolds in
concrete dynamical systems can be realized by ana-
lytical or numerical methods, or by their combina-
tion.

In space manifold dynamics, we are often in-
terested in computing simply unstable periodic or-
bits around the collinear libration points in the
framework of the circular restricted three body prob-

lem, where, depending on the application, the pri-
mary and secondary bodies can be taken either as the
Earth and the Moon, or the Sun and the barycen-
ter of the Earth - Moon system. Of particular in-
terest are the short period orbits lying in the plane
(called ’horizontal Lyapunov orbit’) and perpendicu-
lar to the plane (vertical Lyapunov orbit) of motion
of the primary and secondary bodies, as well as the
1:1 resonant short period orbit called ‘halo orbit’.
A usual computational approach is to employ the
Poincaré - Lindstedt method in order to compute the
periodic orbits themselves in the form of a Fourier
series (see Belló et al. 2010, Section 3). Then, ex-
ploiting the fact that the invariant manifolds of these
orbits are tangent to the invariant manifolds of the
linearized flow in the neighborhood of the periodic
orbits, we can compute initial conditions along either
the unstable or the stable manifold, whose numerical
integration (forward or backward in time) produces
asymptotic orbits lying on the unstable or stable in-
variant manifold, respectively. The accuracy of this
method depends on i) the accuracy of approximation
of the periodic orbits by Lindstedt series, and (ii) the
accuracy of the numerical orbit integrator.

In the sequel, we will present a method of
computation of the unstable periodic orbits and of
their manifolds, due to Moser (1958, see also Siegel
and Moser 1991). This is called the method of
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hyperbolic normal form. In its original form this
method refers to a direct computation of the form
of the phase space flow around unstable equilibrium
points of Hamiltonian dynamical systems. This is
achieved by introducing an appropriate transforma-
tion of the phase-space variables, such that the form
of the invariant manifolds is trivial in the new vari-
ables. However, we will show below that no funda-
mental difficulty exists in passing from the study of
unstable equilibria to the study of unstable periodic
orbits using essentially the same method, provided
that the periodic orbit of interest arises as a contin-
uation of some unstable equilibrium point.

Moser’s way of introducing transformations of
variables does not guarantee the preservation of the
canonical character of the flow in the new variables.
However, a canonical form of the same theory using
Lie generating functions was developed by Giorgilli
(2001).

An important feature of both Moser’s and
Giorgilli’s methods is the fact that the so-resulting
normal forms have a finite domain of convergence.
This sounds peculiar at first, since the resulting se-

ries are supposed to provide an analytic represen-
tation of chaotic orbits, while, on the other hand,
it is well known that the Birkhoff series represent-
ing regular motions around elliptic equilibria are not
convergent but only asymptotic. However, one can
observe that the convergence of the hyperbolic nor-
mal form is due to the fact that the associated series
contain no small divisors. In fact, in the Birkhoff se-
ries we have divisors of the form m1ω1 +m2ω2, with
m1,m2 integers and ω1, ω2 real. But the construc-
tion of the hyperbolic normal form can be thought
of as analogous to the construction of a Birkhoff’s
normal form in which we consider one of the two fre-
quencies, say ω2, to be imaginary, i.e. of the form,
ω2 = iν, where ν is a real number. This number
represents the absolute value of the (also real) loga-
rithm of either of the eigenvalues of the monodromy
matrix of the unstable periodic orbit generating the
manifolds (see below). Thus, in the hyperbolic nor-
mal form the divisors are of the form m1ω1 + im2ν,
whereby it follows that a divisor’s modulus can never
become smaller than the minimum of |ω1| and |ν|.

Fig. 2. A schematic example of the transformation of the convergence domain of the hyperbolic normal
form when passing from new to old canonical variables (ξ′, η′) → (ξ, η) (see text). (a) The shaded area
represents the convergence domain around the unstable periodic orbit P, including a segment of the unstable
(U) and stable (S) invariant manifolds of P, which, in these variables, coincide with the axes. (b) When
passing to the old variables (ξ, η), the domain of convergence is transformed so that it includes a homoclinic
point H. (c) Same as in (a) but for a smaller domain of convergence. Now, the image in old variables (d)
contains no homoclinic point.

3



C. EFTHYMIOPOULOS

This fact notwithstanding, the domain of con-
vergence of the hyperbolic normal form is finite. Fig.
2 shows schematically the implications of this latter
fact in the computation of the so-called homoclinic
points, i.e. points where the stable and unstable
manifolds of the same periodic orbit intersect. As
made clear in Section 2 below, in a set of new canon-
ical variables, say ξ′, η′ which are defined after the
end of the normal form computation, the invariant
manifolds correspond to the axes ξ′ = 0 and η′ = 0.
The images of these axes in the corresponding origi-
nal canonical variables ξ, η are tilted curves. On the
other hand, the domain of convergence of the hyper-
bolic normal form in the (ξ′, η′) plane has the form
of a shaded area, as in Figs. 2a and 2c. These figures
represent two distinct cases regarding the size of the
domain of convergence. Fig. 2a represents a case
in which, when mapping the shaded area to a corre-
sponding shaded area in the original canonical vari-
ables (ξ, η) (Fig. 2b), the segment of the invariant
manifolds contained within the shaded area is long
enough so as to include the first homoclinic intersec-
tion of the stable and unstable manifolds. When this
happens, the hyperbolic normal form can be used to
compute analytically the position of the correspond-
ing homoclinic point. On the other hand, if the do-
main of convergence is small (shaded area in Fig. 2c),
then its image in the old variables (Fig. 2d) does not
contain a homoclinic point.

The question of how to predict whether or not
the domain of convergence of a hyperbolic normal
form contains one or more homoclinic points is open.
In fact, there is only a limited number of studies
of the numerical outcome of hyperbolic normal form
computations in general. In this respect, an impor-
tant work was done in the 90’s by Ozorio de Almeida
and collaborators (Da Silva Ritter et al. 1987, Ozo-
rio de Almeida 1988, Ozorio de Almeida and Viera
1996, Viera and Ozorio de Almeida 1997), who actu-
ally proposed an extension of the method of Moser
resulting in a considerable increase of the domain of
convergence. We will examine this extension by a
concrete example below. However, we mention that
the implementation of even the original method in
symplectic mappings rather than flows (Moser 1956)
has given impressive results, as for example in Da
Silva Ritter et al. (1987), where not only the first
homoclinic point but also some oscillations of the in-
variant manifolds were possible to compute analyti-
cally (see Fig. 5 of Da Silva Ritter et al. (1987)).

The computations of Ozorio de Almeida and
collaborators use the original version of Moser’s nor-
mal form, which makes no use of generating functions
or the canonical formalism. In the sequel, we present
a simple application in a perturbed pendulum model
using the canonical formalism instead, as proposed
by Giorgilli (2001). We then give a concrete example
of computation of the hyperbolic normal form, and
also implement the extension proposed by Ozorio de
Almeida within the same context. The example is
presented in sufficient detail so as to provide i) a full
explanation of the method, and ii) a numerical probe
of its performance. However, we should stress that

this subject is relatively new as far as concrete appli-
cations are concerned, and further study is required
in order to establish the limits and usefulness of the
method of hyperbolic normal forms.

2. NUMERICAL EXAMPLE

In order to give a concrete numerical exam-
ple of computation of the hyperbolic normal form,
we consider a periodically driven pendulum model
given by the Hamiltonian:

H =
p2

2
− ω2

0(1 + ε(1 + p) cosωt) cosψ . (1)

A model of a form similar to Eq. (1) often appears
in cases of resonances in astronomical systems. In-
troducing a dummy action I and its conjugate angle
φ = ωt we can write equivalently the Hamiltonian
as:

H ′(ψ, φ, p, I) =
p2

2
+ωI−ω2

0(1+ε(1+p) cosφ) cosψ .

(2)
Fig. 3a shows the phase portrait for a rather

high value of the perturbation ε, namely ε = 1, when
ω0 = 0.2

√
2, ω = 1. The phase portrait is obtained

by a stroboscopic plot of all points (ψ(nT ), p(nT ))
along particular orbits at the successive times t =
nT , n = 1, 2, ..., where T = 2π/ω is the perturber’s
period. We observe that most trajectories are chaotic
in the considered domain. In fact, only a small part
of the libration domain, as well as two conspicuous
1:1 resonant islands and some other smaller islands
host quasi-periodic trajectories.

The most important source of chaos in Fig.
3a is an unstable periodic orbit, called hereafter the
orbit P, which is the continuation for ε �= 0 of the
hyperbolic equilibrium point which exists for ε = 0
at ψ = π, p = 0. This orbit generates the stable
(WP

s ) and unstable (WP
u ) manifolds whose intersec-

tions with the surface of section correspond to the
curves denoted WP

s and WP
u in Fig. 3b.

We now give the following definitions:
Let P be a periodic orbit of period T , and:

DP =
{(

ψP (t), φP (t), Iψ,P (t), IP (t)
)
, 0 ≤ t ≤ T

}

be the set of all points of the periodic orbit P
parametrized by the time t. Let q = (ψ, φ, Iψ , I)
be a randomly chosen point in the phase space. The
minimum distance of the point q from the periodic
orbit is defined as:

d(q, P ) = min {dist(q,qp) for all qP ∈ Dp}
where dist() denotes the Euclidean distance. Finally,
let q(t;q0) denote the orbit resulting from a partic-
ular initial condition q0, at t = 0.
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Fig. 3. (a) Surfaces of section of the perturbed pendulum model (Hamiltonian (2)) for ε = 1. (b) The
unstable (Wu) and stable (Ws) manifolds emanating from the periodic orbit P.

The unstable manifold of P is defined as the
set of all initial conditions q0 whose resulting orbits
tend asymptotically to the periodic orbit in the back-
ward sense of time. Namely:

WP
u =

{
q0 : lim

t→−∞ d(q(t;q0), P ) = 0
}
. (3)

The definition (3) implies that actually all orbits
with initial conditions onWP

u recede on average from
the periodic orbit in the forward sense of time.

Furthermore, a straightforward consequence
of the definition is that the setWP

u is invariant under
the phase flow, i.e. all initial conditions on WP

u lead
to orbits lying entirely on WP

u .
Similarly, we define the stable manifold of P

as the set of all initial conditions q0 whose resulting
orbits tend asymptotically to the periodic orbit in
the forward sense of time, i.e.

WP
s =

{
q0 : lim

t→∞ d(q(t;q0), P ) = 0
}
. (4)

The set WP
s is also invariant under the phase flow of

the Hamiltonian (2).
In numerical computations, the periodic orbit

P can be found by a ‘root-finding’ algorithm (e.g.
Newton’s one). We can also compute the eigenvalues
and eigenvectors of the monodromy matrix of P, by
solving numerically the variational equations of mo-
tion around P. Since P is unstable, the two eigenval-
ues (Λ1, Λ2) of the monodromy matrix are real and
reciprocal. The unstable (stable) eigen-direction cor-
responds to the eigenvalue which is absolutely larger
(smaller) that unity. In order to compute, say, the
unstable manifold of P we take a small segment ΔS
on the surface of section along the unstable eigen-
direction, starting from the periodic orbit P, and

compute the successive images of this segment un-
der the surface of section mapping. In Fig. 3b, the
unstable manifold is shown as a thin curve starting
from the left side point P (which is the same as the
right side point, modulo 2π), which has the form of
a straight line close to P, but exhibits a number of
oscillations as it approaches the right side point P.
It should be noted that the possibility to obtain a
picture of the manifold using an initial line segment
relies on the so-called Grobman (1959) and Hartman
(1960) theorem, which states that in a neighborhood
of P the nonlinear flow around P is homeomorphic
to the flow corresponding to the linearized equations
of motion.

In a similar way we plot the stable manifold
WP
s emanating from P, taking an initial segment

along the stable eigen-direction, and integrating in
the backward sense of time. In Fig. 3b, the stable
manifold is also shown by a thin curve, symmetric to
the curve WP

u with respect to the axis ψ = 0. This
symmetry is a feature of the particular model under
study.

Using the above example, we will now present
the concept of the hyperbolic normal form, as well as
how this can be used in computations related to un-
stable periodic orbits and their invariant manifolds.

The idea of a hyperbolic normal form is sim-
ple: close to any unstable periodic orbit, we wish to
pass from old to new canonical variables (ψ, φ, p, I)
→ (ξ, φ′, η, I ′), via a transformation of the form:

ψ = Φψ(ξ, φ′, η, I ′)
φ = Φφ(ξ, φ′, η, I ′) (5)
p = Φp(ξ, φ′, η, I ′)
I = ΦI(ξ, φ′, η, I ′)
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so that the Hamiltonian in the new variables takes
the form:

Zh = ωI ′ + νξη + Z(I, ξη) (6)

where ν is a real constant. In a Hamiltonian like
(6), the point ξ = η = 0 corresponds to a periodic
orbit, since we find ξ̇ = η̇ = 0 İ ′ = 0 from Hamil-
ton’s equations, while φ′ = φ′0 + (ω + ∂Z(I ′, 0)∂I ′)t.
This implies a periodic orbit, with frequency ω′ =
(ω + ∂Z(I ′, 0)∂I ′). Note that in a system like (2),
where the action I is dummy, I ′ appears in the hyper-
bolic normal form only through the term ωI ′. Thus,
the periodic solution ξ = η = 0 has a frequency al-
ways equal to ω.

By linearizing Hamilton’s equations of motion
near this solution, we find that it is always unstable.
In fact, we can easily show that the linearized equa-
tions of motion for small variations δξ, δη around
ξ = 0, η = 0 are:

δ̇ξ = (ν + ν1(I))δξ, δ̇η = −(ν + ν1(I))δη

where ν1(I) = ∂Z(I, ξη = 0)/∂(ξη). The solutions
are δξ(t) = δξ0e

(ν+ν1)t, δη(t) = δη0e
−(ν+ν1)t. Af-

ter one period T = 2π/ω we have δξ(T ) = Λ1δξ0,
δη(T ) = Λ2δξ0, where Λ1,2 = e±2π(ν+ν1)/ω. Thus,
the two eigendirections of the linearized flow corre-
spond to setting δξ0 = 0, or δη0 = 0, i.e. they coin-
cide with the axes ξ = 0, or η = 0. These axes are
invariant under the flow of (6) and, therefore, they
constitute the unstable and stable manifold of the
associated periodic orbit P in the new variables ξ, η.

Fig. 4. The characteristic curve (value of the fixed
point variable pP on the surface of section) for the
main unstable periodic orbit as a function of ε. The
dots correspond to a purely numerical calculation us-
ing Newton’s method. The solid curve shows the the-
oretical calculation using a hyperbolic normal form
(similar to formula (22) in text, but for a normaliza-
tion up to the fifteenth order).

After we explicitly compute the canonical
transformations (5), Eqs. (5) can be used to compute
analytically the periodic orbit and its asymptotic in-
variant manifolds in the original canonical variables
as well. We will present the details of this computa-
tion in Section 3 below. However, we discuss now its
outcome, shown in Figs. 4 and 5.

Fig. 4 shows the so-called characteristic curve
of the unstable periodic orbit P. The characteristic
curve yields the value of the initial conditions (on a
surface of section) as a function of ε for which the
resulting orbit is the periodic one. In our case, we
always have ψP = 0 while pP varies with ε. In order
to compute pP (ε) analytically, returning to Eqs. (5)
we set ξ = η = 0. Furthermore, since I ′ is an in-
tegral of the Hamiltonian flow of (6), we replace its
value by a constant I ′ = c. The value of c is fixed by
the value of the energy at which the computation is
done. Finally, knowing the frequency ω′ by which φ′
evolves, we can set φ′ = ω′t+φ′0. Substituting these
expressions in the transformation Eqs. (5), we are
led to:

ψP (t) = Φψ(0, ω′t+ φ′0, 0, c)
φP (t) = Φφ(0, ω′t+ φ′0, 0, c) (7)
pP (t) = Φp(0, ω′t+ φ′0, 0, c)
IP (t) = ΦI(0, ω′t+ φ′0, 0, c) .

The set of Eqs. (7) yields now an analytic representa-
tion of the periodic orbit P in the whole time interval
0 ≤ t ≤ 2π/ω′. In fact, Eqs. (7) provide a formula
for the periodic orbit in terms of Fourier series, which
allows us to define not only its initial conditions on
a surface of section, but also the time evolution for
the whole set of canonical variables along P in the
time interval 0 ≤ t ≤ T .

As a comparison, the dotted curve in Fig.
4 shows pP (ε) as computed by a purely numeri-
cal process, i.e., implementing Newton’s root-finding
method, while the solid curve yields pP (ε) as com-
puted by a hyperbolic normal form at the normal-
ization order r = 15 (see below). The agreement
is excellent, and we always recover 8-9 digits of the
numerical calculation of the periodic orbit even for
values of ε much larger than unity. In fact, since
the origin is always included in the domain of con-
vergence of the normal form, we can increase this
accuracy by computing normal form approximations
of higher and higher order.

Now, to compute the invariant manifolds of P
by the normal form, we first fix a surface of section
by setting, say, φ′ = 0. Let us assume without loss of
generality that the unstable manifold corresponds to
setting η = 0. Via the transformation equations, we
then express all canonical variables as a function of ξ
along the asymptotic curve of the unstable manifold
on the surface of section, namely:

ψP,u(ξ) = Φψ(ξ, 0, 0, c), pP,u(ξ) = Φp(ξ, 0, 0, c) .
(8)
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Due to Eq. (8), ξ can be considered as a length pa-
rameter along the asymptotic curve of the unstable
manifold Wu. Numerically, this allows to compute
the asymptotic curve Wu on the surface of section
by giving different values to ξ. Such a computation
is shown by a thick curve in Fig. 5a. We observe
that the theoretical curve Wu agrees well with the
numerical one up to a certain distance correspond-
ing to ξ ∼ 1 whereby the theoretical curve starts
deviating from the true asymptotic curve Wu. This
is because, as discussed already, the hyperbolic nor-
mal form has a finite domain of convergence around
P. Thus, by using a finite truncation of the series (5)
(representing the normalizing canonical transforma-
tions), deviations occur at points beyond the domain
of convergence of the hyperbolic normal form.

Similar arguments (and results, as shown in
Fig. 5a) are found for the stable manifold of P. In
that case, we substitute ξ = 0 in the transformation
equations and employ η as a parameter, namely:

ψP,s(η) = Φψ(0, 0, η, c), pP,s(η) = Φp(0, 0, η, c) .
(9)

In Fig. 5a we see that the domains of conver-
gence of the hyperbolic normal form is small enough
so that the two theoretical curves Wu and Ws have
no intersection. This implies that we cannot use this
computation to specify analytically the position of a
homoclinic point, like H in Fig. 5. This corresponds
to the case described in the schematic Figs. 2c and

2d.
However, Ozorio de Almeida and Viera (1997)

have considered an extension of the original theory of
Moser, which allows for a considerable extension of
the domain of convergence of the hyperbolic normal
form so as to include one or more homoclinic points.
In this extension

i) we develop first the usual construction in or-
der to compute analytically a finite segment of, say,
Wu within the domain of convergence of the hyper-
bolic normal form. Then,

ii) we compute by analytic continuation one or
more images of the initial segment, using to this end
the original Hamiltonian as a Lie generating function
of a symplectic transformation corresponding to the
Poincaré mapping under the Hamiltonian flow of (2)
itself. In the Appendix, we give the explicit formulae
defining canonical transformations by Lie series. The
final result can be stated as follows: If q is a point
computed on the invariant manifold, we compute its
image via:

q′ = exp(tnLH) exp(tn−1LH) . . . exp(t1LH)q (10)

where tn + tn−1 + . . . + t1 = T , while the times ti
are chosen so as to always lead to a mapping within
the analyticity domain of the corresponding Lie se-
ries in a complex time domain. The Lie exponential
operator in Eq. (10) is defined in the Appendix.

Fig. 5. The thin dotted lines show the unstable (Wu) and stable ((Ws) manifolds emanating from the main
unstable periodic orbit (P) in the model (2), for ε = 1, after a purely numerical computation (mapping for
8 iterations of 1000 points along an initial segment of length ds = 10−3 taken along the unstable and stable
eigen-directions respectively. In (a), the thick lines show a theoretical computation of the invariant manifolds
using a hyperbolic normal form at the normalization order r = 15 (see text). Both theoretical curves Wu and
Ws deviate from the true manifolds before reaching the first homoclinic point (H). (b) Same as in (a) but
now the theoretical manifolds are computed using the analytic continuation technique suggested in Ozorio de
Almeida and Viera (1997). The theoretical curves cross each other at the first homoclinic point, thus, this
point can be computed by series expansions.
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Fig. 5b shows the result obtained by apply-
ing Eq. (10) to the data on the invariant manifolds
of Fig. 5a. In this computation we split the pe-
riod T = 2π in four equal time intervals of duration
t1 = t2 = t3 = t4 = π/2. The thick lines show the
theoretical computation of the images (for the unsta-
ble manifold), or pre-images (for the stable manifold,
for which we put a minus sign in front of all times t1
to t4) of the thick lines shown in panel (a), after (or
before) one period. We now see that the resulting
series represent the true invariant manifolds over a
considerably larger extent thus allowing to compute
theoretically the position of the homoclinic point H.

3. DETAILS OF THE COMPUTATION

We now present in detail the steps leading to
the previous results, i.e. a practical example of cal-
culation of a hyperbolic normal form.

i) Hamiltonian expansion. Starting from the
Hamiltonian (2) in the neighborhood of P (see phase
portraits in Fig. 3) we first expand the Hamilto-
nian around the value ψ0 = π (or, equivalently, −π),
which corresponds to the position of the unstable
equilibrium when ε = 0. Setting ψ = π + u, the first
few terms (up to fourth order) are:

H =
p2

2
+ I − 0.08

(
1 + 0.5ε(1 + p)(eiφ + e−iφ)

) ×
×

(
−1 +

u2

2
− u4

24
− ...

)
. (11)

The hyperbolic character of motion in the neighbor-
hood of the unstable equilibrium is manifested by the
combination of terms:

H = I +
p2

2
− 0.08

u2

2
+ ... (12)

The constant ν appearing in Eq. (6) is related to the
constant 0.08 appearing in Eq. (12) for ν2 = 0.08.
In fact, if we write the hyperbolic part of the Hamil-
tonian as Hh = p2/2− ν2u2/2, it is possible to bring
Hh in hyperbolic normal form by introducing a linear
canonical transformation:

p =
√
ν(ξ + η)√

2
, u =

(ξ − η)√
2ν

(13)

where ξ and η are the new canonical position and
momentum respectively. Then Hh acquires the de-
sired form, i.e. Hh = νξη.

Substituting the transformation (13) into the
Hamiltonian (11) we find

H = I + 0.282843ξη− 0.041667ξη3 + 0.0625ξ2η2 −
− 0.010417ξ3η + 0.010417ξ4 +

+ ε

[
0.08 + 0.030085η− 0.070711η2 −

− 0.026591η3 + 0.010417η4 + 0.030085ξ+
+ 0.14142ξη+ 0.0265915ξη2 − 0.041667ξη3 −
− 0.070711ξ2 + 0.026591ξ2η + 0.0625ξ2η2 −
− 0.026591ξ3 − 0.041667ξ3η +

+ 0.010417ξ4 + ...

] (
eiφ + e−iφ

2

)
.

In computer-algebraic calculations, it is now conve-
nient to introduce an artificial parameter λ, with
numerical value equal to λ = 1, called the ‘book-
keeping parameter’ (see Efthymiopoulos 2008). We
put a factor λr in front of each term in the above
Hamiltonian expansion which indicates that the term
is to be considered at the r-th normalization step.
Furthermore, we carry λ in all subsequent algebraic
operations. In this way, we can keep track of the es-
timated order of smallness of each term which either
exists in the original Hamiltonian or is generated in
the course of the normalization process.

In the present case, it is crucial to recognize
that the quantities ξ, η themselves can be considered
as small quantities describing the neighborhood of a
hyperbolic point. For reasons explained below, we
want to retain a book-keeping factor λ0 for the low-
est order term ξη. We thus impose the rule that
monomial terms containing a product ξs1ηs2 acquire
a book-keeping factor λs1+s2−2 in front. Finally, we
add a book-keeping factor λ to all the terms that are
multiplied by ε.

After the introduction of the book-keeping pa-
rameter, up to O(λ2) the Hamiltonian reads:

H(0) = I + 0.282843ξη+ λε

[
0.04 +

+ 0.0150424(ξ+ η) − 0.0353553(ξ2 + η2) +

+ 0.0707107ξη

]
(eiφ + e−iφ) +

+ λ2

[
0.0104167(ξ4 + η4) −

− 0.0416667(ξη3 + ξ3η) + 0.0625ξ2η2 +

+ 0.0132957ε(ξ2η + ξη2 − ξ3 − η3)

]
·

· (eiφ + e−iφ) + . . .

ii) Hamiltonian normalization. The aim of the
hamiltonian normalization is to define a sequence of
near-identity canonical transformations:

(ξ, η, φ, I) ≡ (ξ(0), η(0), φ(0), I(0)) →
→ (ξ(1), η(1), φ(1), I(1)) →
→ (ξ(2), η(2), φ(2), I(2)) → . . .

such that the original Hamiltonian H ≡ H(0) is
transformed to H(1), H(2),. . . respectively, with the
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property that after r steps, the Hamiltonian H(r) is
in normal form, according to the definition (6), up
to terms of order O(λr).

The normalization can by accomplished by
means of Lie series (see the Appendix) via the fol-
lowing recursive algorithm. After r steps, the Hamil-
tonian has the form:

H(r) = Z0 + λZ1 + ...+ λrZr + λr+1H
(r)
r+1 +

+ λr+2H
(r)
r+2 + . . . (14)

where Z0 = ωI + νξη. The Hamiltonian term H
(r)
r+1

contains some terms that are not in normal form ac-
cording to the definition (6). Denoting the ensemble
of these terms by h(r)

r+1, we compute the Lie generat-
ing function χr+1 as the solution of the homological
equation:

{Z0, χr+1} + λr+1h
(r)
r+1 = 0 (15)

where {·, ·} denotes the Poisson bracket operator.
We then compute the new transformed Hamiltonian
via:

H(r+1) = exp(Lχr+1)H
(r) . (16)

This is in normal form up to terms of order r + 1,
namely:

H(r+1) = Z0 + λZ1 + ...+ λrZr + λr+1Zr+1 +

+ λr+2H
(r+1)
r+2 + . . . (17)

where Zr+1 = H
(r)
r+1 − h

(r)
r+1.

The solution of the homological equation is
readily found by noting that the action of the opera-
tor {Z0, ·} = {ωI+ νξη, ·} on monomials of the form
ξs1ηs2a(I)eik2φ yields:{

ωI + νξη, ξs1ηs2a(I)eik2φ
}

=

−[(s1 − s2)ν + iωk2]ξs1ηs2a(I)eik2φ .

Thus, if we write h(r)
r+1 as:

h
(r)
r+1 =

∑
(s1,s2,k2)/∈M

bs1,s2,k2(I)ξ
s1ηs2eik2φ

where M denotes the so-called resonant module de-
fined by:

M = {(s1, s2, k2) : s1 = s2 and k2 = 0} , (18)

then the solution of the homological equation (15) is:

χ1 =
∑

(s1,s2,k2)/∈M

bs1,s2,k2(I)
(s1 − s2)ν + iωk2

ξs1ηs2eik2φ .

(19)
The main remark regarding Eq. (19) is that

the divisors are complex numbers with a modulus

bounded from below by a positive constant, i.e. we
have:

|ν(s1 − s2) + ik2ω| =

=
√

(s1 − s2)2ν2 + k2
2ω

2 ≥ min(|ν|, |ω|)
for all (s1, s2, k2) /∈ M . (20)

This last bound constitutes the most relevant fact
about the hyperbolic normal form construction be-
cause it implies that this construction is convergent
with a finite analyticity domain at the limit r → ∞.
A formal proof of this fact is given in Giorgilli (2001).

As an example, returning to our computations
regarding the specific model of Figs. 3 to 5, we will
present the detailed computation of the hyperbolic
normal form of order O(λ). Note a simplification in
the notation below, i.e. that we omit superscripts
of the form (r) for all the canonical variables, keep-
ing such superscripts only in the various quantities
depending on these variables.

According to the general algorithm, at first or-
der we want to eliminate i) terms depending on the
angle φ, or, ii) terms independent of φ but depending
on a product ξs1ηs2 with s1 �= s2. These are:

h
(0)
1 = ε

[
0.04 + 0.0150424(ξ+ η) −

− 0.0353553(ξ2 + η2) + 0.0707107ξη

]
(eiφ + e−iφ)

]
.

The homological equation defining the generating
function χ1 is given by:

{I + 0.282843ξη, χ1} + λh(0) = 0 . (21)

Following Eq. (19), the solution of Eq. (21) is:

χ1 = λεi

[(
− 0.04 + (0.00393948− 0.0139282i)ξ−

− (0.00393948 + 0.0139282i)η− (0.0151515−
− 0.0267843i)ξ2 + (0.0151515 + 0.0267843i)η2 −
− 0.070711ξη

)
eiφ +

+
(

0.04 + (0.00393948 + 0.0139282i)ξ−
− (0.00393948− 0.0139282i)η− (0.0151515 +
+ 0.0267843i)ξ2 + (0.0151515− 0.0267843i)η2 +

+ 0.070711ξη
)
e−iφ

]
.

The normalized Hamiltonian, after computing
H(1) = exp(Lχ1)H

(0) is in normal form up to terms
of O(λ). In fact, we find that there are no new nor-
mal form terms at this order, but such terms ap-
pear at order λ2. Computing, in the same way as
above, the generating function χ2, we find H(2) =

9
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exp(Lχ2)H(1), in normal form up to order two. This
is

H(2) = I + 0.282843ηξ + λ2(0.0625ξ2η2 −
− ε20.0042855ξη) +O(λ3) + . . .

Higher order normalization requires use of a
computer-algebraic program since the involved op-
erations soon become quite cumbersome.

For completeness we give below the analytic
expression for the periodic orbit P up to order O(λ2)
found as explained above, i.e. by exploiting the
normalizing transformations of the hyperbolic nor-
mal form. The old canonical variables (ξ, η) are
computed in terms of the new canonical variables
(ξ(2), η(2)) following:

ξ = exp(Lχ2) exp(Lχ1)ξ
(2)

η = exp(Lχ2) exp(Lχ1)η
(2) .

This yields functions (up to order O(λ2)) ξ =
Φξ(ξ(2), φ(2), η(2)), and η = Φη(ξ(2), φ(2), η(2)). By
virtue of the fact that I is a dummy action, we have
φ(2) = φ = ωt = t while we set ξ(2) = η(2) = 0 for
the periodic orbit. With these substitutions we find:

ξP (t) = Φξ(0, t, 0), ηP (t) = Φη(0, t, 0) .

Finally, we substitute the expressions for ξP (t) and
ηP (t) in the linear canonical transformation (13), in
order to find analytic expressions for the periodic or-
bit in the original variables p, ψ = π + u. Switching
back to trigonometric functions and setting λ = 1,
we finally find:

ψP (t) = π + 0.0740741ε sin t−
− 0.000726216ε2 sin(2t) + . . . (22)

pP (t) = −0.00592593ε cost−
− 0.00145243ε2 cos(2t) + . . . .

The position of the periodic orbit on the surface of
section can now be found by setting t = 0 in Eqs.
(22). In the actual computation of Figs. 4 and 5, we
compute all expansions up to O(λ15), after expand-
ing also cosψ in the original Hamiltonian up to the
same order.
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APPENDIX: CANONICAL
TRANSFORMATIONS BY LIE SERIES

The use of Lie transformations in canonical
perturbation theory was introduced by Hori (1966)
and Deprit (1969). Let us consider an arbitrary func-
tion χ(ψ, φ, p, I) and compute the Hamiltonian flow
of χ given by:

ψ̇ =
∂χ

∂p
, φ̇ =

∂χ

∂I
, ṗ = − ∂χ

∂ψ
, İ = −∂χ

∂φ
. (23)

Let ψ(t), φ(t), p(t), I(t) be a solution of Eqs. (23)
for some choice of initial conditions ψ(0) = ψ0,
φ(0) = φ0, p(0) = p0, and I(0) = I0. For any time t,
the mapping of the variables in time, namely:

(ψ0, φ0, p0, I0) → (ψt, φt, pt, It)

can be proven to be a canonical transformation (see,
for example, Arnold (1978)). In that sense, any ar-
bitrary function χ(ψ, φ, p, I) can be thought of as a
function which can generate an infinity of different
canonical transformations via its Hamilton equations
of motion solved for infinitely many different values
of time t. The function χ is called a Lie generating
function.

Consider now the Poisson bracket operator
Lχ ≡ {·, χ} whose action on functions f(ψ, φ, p, I)
is defined by:

Lχf = {f, χ} =
∂f

∂ψ

∂χ

∂p
+
∂f

∂φ

∂χ

∂I
− ∂f

∂p

∂χ

∂ψ
− ∂f

∂I

∂χ

∂φ
.

(24)
The time derivative of any function f(ψ, φ, p, I)
along a Hamiltonian flow defined by the function χ
is given by:

df

dt
=

∂f

∂ψ
ψ̇ +

∂f

∂φ
φ̇+

∂f

∂p
ṗ+

∂f

∂I
İ =

=
∂f

∂ψ

∂χ

∂p
+
∂f

∂φ

∂χ

∂I
− ∂f

∂p

∂χ

∂ψ
− ∂f

∂I

∂χ

∂φ
,

that is:
df

dt
= {f, χ} = Lχf . (25)

Extending this to higher order derivatives, we have

dnf

dtn
= {. . . {{f, χ}, χ} . . . χ} = Lnχf . (26)

Writing the solution of, say ψt, for a given set of
initial conditions as a Taylor series:

ψt = ψ0 +
dψ0

dt
t+

d2ψ0

dt2
t2 + . . . =

∞∑
n=0

1
n!
dnψ0

dtn
tn ,

(27)
and taking into account that the Taylor expansion of
the exponential around the origin is given by

exp(x) = 1 + x+
x2

2
+
x3

3!
+ . . . =

∞∑
n=0

xn

n!

we can see that the Taylor expansion (27) is formally
given by the following exponential operator:

exp
d

dt
= 1 +

d

dt
+

1
2
d2

dt2
+ . . .

Taking into account Eqs. (25) and (26), we are lead
to the formal definition of the Lie series:

ψt = ψ0 + (Lχψ0)t+
1
2
(L2

χψ0)t2 + ... (28)

Setting, finally, the time as t = 1, we arrive at the
formal definition of a canonical transformation using
Lie series by:

ψ1 = exp(Lχ)ψ0, φ1 = exp(Lχ)φ0,

p1 = exp(Lχ)p0, I1 = exp(Lχ)I0 . (29)

A basic property of Lie transformations is that
the change in the form of an arbitrary function f of a
set of canonical variables under a Lie transformation
can be found by acting directly with the Lie operator
exp(Lχ) on f , i.e.:

f(exp(Lχ)ψ, exp(Lχ)φ, exp(Lχ)p, exp(Lχ)I) =
= exp(Lχ)f(ψ, φ, p, I) . (30)

Thus, computations of canonical perturbation the-
ory based on Lie transformations involve only the
evaluation of derivatives, which is a straightforward
algorithmic procedure. This fact renders the method
of Lie transformations quite convenient for the im-
plementation of computer-algebraic computations of
normal forms.
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Pregledni rad po pozivu

Posledǌih godina prouqavaǌe dinamike
nestabilnih periodiqnih orbita na invari-
jantnim mnogostrukostima, kod nelinearnih
Hamiltonovih dinamiqkih sistema, dovelo
je do brojnih primena u nebeskoj mehanici
i dinamiqkoj astronomiji. Dve trenutno
najznaqajnije primene su i) u svemirskoj
mehanici na mnogostrukostima, tj. ko-
rix�eǌe mnogostrukosti prilikom dizajni-
raǌa svemirskih misija, i, u potpuno dru-
gaqijem kontekstu, ii) za prouqavaǌe spiralne
strukture galaksija. U danaxǌe vreme ve�ina
pristupa za izraqunavaǌe orbita povezanih
sa dinamikom na mnogostrukostima (tj. peri-
odiqnim ili asimptotskim orbitama) oslaǌa

se, ili na tzv. Poinkare-Lindstedt metodu, ili
na qisto numeriqka izraqunavaǌa. U ovom
radu dajemo kratak prikaz jedne analitiq-
ke metode za odre�ivaǌe invarijantne mno-
gostrukosti, prvobitno predlo�ene od strane
Mozera (Moser 1958), a kasnije razvijene
u kanonskom obliku od strane �or�ilija
(Giorgilli 2001). Koristimo jednostavan primer
za demonstraciju kako se mo�e izvrxiti
odre�ivaǌe hiperboliqke normalne forme,
pozivaju�i se na analitiqko proxireǌe
metode od strane Ozoria de Almeide i koau-
tora, pomo�u kojeg mo�emo znaqajno pro-
du�iti inicijalni domen konvergencije Moze-
rove normalne forme.
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