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SUMMARY: We present IDL (Interactive Data Language) codes for fitting a
theoretical emission profile of a shell supernova remnant (SNR) to the mean profile
of an SNR obtained from radio observations. Two considered theoretical models are:
1) a shell with constant emissivity and 2) a synchrotron shell with radially aligned
magnetic field. The codes were applied to several observed supernova remnants.
Good results are obtained in five considered cases, which justify the use of our
code for remnants that are bright (so that observational errors are not large) and
spherically symmetric enough.

Key words. ISM: supernova remnants – radio continuum: ISM – methods: nu-
merical – ISM: individual objects: G17.8-2.6, G54.4-0.3, G127.1+0.5, G132.7+1.3,
G332.0+0.2

1. MODELS OF SHELL SUPERNOVA
REMNANTS EMISSION

Supernova remnants (SNRs) are among the
strongest synchrotron sources in the Milky Way and
other galaxies. We consider two models of shell SNRs
emission: an optically thin shell with constant emis-
sivity and an optically thin synchrotron shell with
radially aligned magnetic field. Here, only final re-
sults are given. For theoretical details, see Arbutina
and Opsenica (2012). A hypothetical shell SNR is
shown in Fig. 1.

1.1. Model with constant emissivity

The constant emissivity model intensity of
emitted radiation is given by formula:

Iν =

⎧⎪⎪⎨
⎪⎪⎩

Cν

(√
sin2 θ2 − sin2 θ−√

sin2 θ1 − sin2 θ
)

, 0 < θ < θ1

Cν

√
sin2 θ2 − sin2 θ, θ1 ≤ θ ≤ θ2,

(1)
where θ1 = arcsin R−Δ

d , θ2 = arcsin R
d and Cν =

2ενd.
The emissivity, which is constant in this

model, is denoted by εν , where ν is the observed
frequency. Radius is denoted by R, Δ is shell thick-
ness and d distance to the remnant. The graphical
representation of Eq. (1) is shown in Fig. 2. The
flux density is given by the formula:

Sν =
2π

3
Cν

(
sin3 θ2 − sin3 θ1

)
. (2)
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Fig. 1. Linear and angular dimensions of a shell SNR model.
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Fig. 2. Graphical representation of Eq. (1), as-
suming θ1 = 0.009 rad and θ2 = 0.01 rad.

1.2. Model with radial magnetic field

In the case of this model, intensity of syn-
chrotron radiation is given by:

Iν =

⎧⎨
⎩

2Cν sin θ
∫ μ2−

μ1−

(
1 − μ2

)α−2
2 dμ, 0 < θ < θ1

Cν sin θ
∫ μ2−

μ2+

(
1 − μ2

)α−2
2 dμ, θ1 ≤ θ ≤ θ2,

(3)

where μ = cos θ′, μ1,2± = ∓
√

sin2 θ1,2−sin2 θ

sin θ1,2
, θ1 =

arcsin R−Δ
d , θ2 = arcsin R

d and Cν = ε̃νd.
Emissivity is given by εν = ε̃ν (sin θ′)α+1,

where ε̃ν ∝ Bα+1ν−α. Magnetic field is denoted by
B and α is spectral index which has average value
of 0.5 for SNRs. The angle between line of force of
the magnetic field and line of sight is θ′. Graphical
representation of Eq. (3) is shown in Fig. 3. The
flux density is given by:

Sν =
2π

√
π

3
Γ

(
α+3

2

)
Γ

(
α+4

2

)Cν

(
sin3 θ2 − sin3 θ1

)
. (4)
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Fig. 3. Graphical representation of Eq. (3), as-
suming θ1 = 0.009 rad, θ2 = 0.01 rad and α = 0.5.

2. INTERACTIVE DATA
LANGUAGE (IDL) CODES

2.1. Direct problem: simulation of
observations of shell SNRs with
radio telescope

When we observe an object in the sky with a
radio telescope, image that we obtain is a convolu-
tion of real intensity of emission of the object and
power pattern of the telescope:

Iconv
ν (θ0, ϕ0) =

∫ π

0

∫ 2π

0
Iν (θ, ϕ)Pn (θ′′) sin θdθdϕ∫ π

0

∫ 2π

0 Pn (θ) sin θdθdϕ
,

(5)
where Iν (θ, ϕ) is the real intensity of and Pn (θ) is
the power pattern of the radio telescope. Angle θ′′ is
related to other angular parameters through follow-
ing relation of spherical trigonometry:
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cos θ′′ = cos θ cos θ0 + sin θ sin θ0 cos (ϕ − ϕ0) , (6)

as it can be seen from Fig. 4. Here, we assumed that
power pattern is symmetrical, so it does not depend
on variable ϕ.

Fig. 4. Schematic representation of angles from
Eq. (6) on celestial sphere. Element of double inte-
gration of Eq. (5) is also shown.

If convolution (5) is simulated numerically, it
must be assumed that power pattern takes zero value
for angles greater than some critical angle θc, because
of technical limitations. For power pattern Pn (θ),
two possible cases have been chosen: Gaussian ap-
proximation and approximation with Bessel function
of the first kind.

(i) In the case of Gaussian approximation, the
power pattern is given by:

Pn (θ) =
{

e−aθ2
, θ ≤ θc

0, θ > θc,
(7)

where a = 4 ln 2

HPBW2 . HPBW stands for Half Power
Beam Width. In the case of Gaussian approximation
of power pattern, θc of 5σ is used, where σ is an an-
gle at which Gaussian power pattern takes value 1

e ,
and it is equal to 1√

a
.

(ii) In the case of approximation with Bessel func-
tion of the first kind, the power pattern is
given by:

Pn (θ) =

⎧⎨
⎩

[
2J1( πD

λ sin θ)
πD
λ sin θ

]2

, θ ≤ θc,

0, θ > θc,

(8)

where J1 (x) is Bessel function of the first kind, D is
the diameter of radio telescope, and λ is the wave-
length of observed emission from an SNR. For Bessel

function approximation HPBW = 1.02 λ
D (Urošević

and Milogradov-Turin 2007, Wilson et al. 2009). In
this case θc equal to 8 HPBW is used.

Expression that is used for numerical simula-
tion of convolution of radiation intensity and power
pattern of a radio telescope is:

Iconv
ν (θ0) =

∫ ∫
Intersection

Iν (θ) Pn (θ′′) sin θdθdϕ

2π
∫ θc
0 Pn (θ) sin θdθ

.

(9)
Here Iν (θ) is one of the expressions (1) or

(3), according to chosen model of SNR emission, and
Pn (θ) is one of the expressions (7) and (8), accord-
ing to chosen power pattern approximation. Angle
θ′′ is related to other angular parameters through
following relation of spherical trigonometry:

cos θ′′ = cos θ cos θ0 + sin θ sin θ0 cosϕ, (10)

as it can be seen from Fig. 5. Convolved intensity
does not depend on ϕ0, so we took ϕ0 = 0 (see Eq.
9).

Fig. 5. Schematic representation of angles from
Eq. (10) on celestial sphere. Element of double in-
tegration from numerator of Eq. (9) is also shown.

Region of double integration in the numerator
of Eq. (9) is the intersection between regions of SNR
model and power pattern (the intersection is shown
in Fig. 5). This double integration is performed by
the IDL function INT 2D. Integration in denominator
of Eq. (9) is performed by the IDL function QROMB.
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Fig. 6. Simulated convolutions for the two considered models. The real intensity of SNR’s emission is
shown by a full line, convolved intensity by diamonds. Angular dimensions in radians are given on abscissas,
intensity of emission on ordinates. Left: model with constant emissivity (θ1 = 0.009 rad, θ2 = 0.01 rad);
right: model with radial magnetic field (θ1 = 0.009 rad, θ2 = 0.01 rad, α = 0.5). Approximation of power
pattern with Bessel function of the first kind with HPBW = 5 · 10−4 rad was used.

Integrations in Eq. (3) are performed by the IDL
functions QROMB and INT TABULATED, as well as by a
”handwritten” function that calculates definite inte-
grals using rectangular method.

For the first model (with constant emissivity),
user of the program enters parameters Cν , θ1, θ2, as
well as parameter of antenna HPBW, and the pro-
gram performs a convolution. For the second model
(with radial magnetic field), user also enters an addi-
tional parameter - spectral index α. The simulated
convolutions for two considered models are shown in
Fig. 6.

2.2. Indirect problem: fitting observed
profile of SNR

User provides observed radial emission profile
of a shell SNR in the form of a table, as well as the
parameter HPBW. By fitting the data to a chosen
model, the program finds the best values for param-
eters Cν , θ1 and θ2 in the case of the first model, or
Cν , θ1, θ2 and α, in the case of the second model,
This is performed by the iterative IDL procedure
CURVEFIT. To perform this procedure, user has to
estimate the initial values for the parameters. The
initial values for the parameters θ1 and θ2, as well as
value of Iν (θ1), can be estimated from observational
data when the mean profile of observed SNR is cal-
culated (see Fig. 7). The initial value for spectral
index α = 0.5 can be used. The initial value for Cν
can be estimated from the following equations:

C init
ν =

Iν

(
θinit
1

)
√

sin2 θinit
2 − sin2 θinit

1

, (11)

for the model with constant emissivity, and

C init
ν =

Iν

(
θinit
1

)
2 sin θinit

1

∫ μc

0
(1 − μ2)

αinit−2
2 dμ

, (12)

where μc =

√
1 −

(
sin θinit

1
sin θinit

2

)2

, for the model with ra-

dial magnetic field. The integral from Eq. (12) can
be calculated using the IDL function QSIMP or QROMB.
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Fig. 7. Scheme for estimating initial values of the
parameters θ1 and θ2, and value of Iν (θ1). The data
points and the error bars are artificially generated.

In addition to finding the best values of pa-
rameters, the program also calculates their errors
(i.e. standard deviations). Finally, the program cal-
culates the integrated flux density of an SNR using
Eqs. (2) or (4), and its error, using equations:

ΔSν

Sν
=

ΔCν

Cν
+3

sin2 θ2 cos θ2Δθ2 + sin2 θ1 cos θ1Δθ1

sin3 θ2 − sin3 θ1

,

(13)
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Fig. 8. Examples of fitted radial emission profiles of SNRs for the two considered models. Artificially
generated mean radial emission profiles of SNRs are shown by ”X” symbols with error bars, fitted (best)
profiles as full lines. Angular dimensions in radians are given on abscissas, intensity of emission on ordinates.
Left: model with constant emissivity; right: model with radial magnetic field.

in the case of model with constant emissivity, and

ΔSν

Sν
= ΔCν

Cν
+ 3 sin2 θ2 cos θ2Δθ2+sin2 θ1 cos θ1Δθ1

sin3 θ2−sin3 θ1
+

1

2Γ( α+3
2 )

dΓ(t)
dt

∣∣∣∣
t= α+3

2

Δα + 1

2Γ(α+4
2 )

dΓ(t)
dt

∣∣∣∣
t= α+4

2

Δα,

(14)
in the case of a model with radial magnetic field
where ΔCν , Δθ1, Δθ2 and Δα are the errors
of the parameters Cν , θ1, θ2 and α respectively.
Gamma function could be calculated using the
IDL function GAMMA. Derivative of gamma function
could be calculated using the expression: dΓ(t)

dt =∫ ∞
0

xt−1e−x ln xdx. The integral from the last ex-
pression can be calculated using the IDL function
QROMO. Examples of fitted radial profiles of SNRs for
the two considered models are shown on Fig. 8.

This method of determining parameters and
flux densities of SNRs from radio observations has
some disadvantages. Potential user of this numerical
method should have several facts in mind:

- Generally, real shell SNRs are not completely
spherical;

- This method uses approximative power pat-
tern of a radio telescope;

- The magnetic field is not radially aligned (this
refers to the second model);

- The sensitivity of the second model to param-
eter α is very weak, so this method can not
determine it successfully enough. It is recom-
mended that one uses value of α that is deter-

mined from spectrum of SNR if available. In
that case, the parameter α should be fixed in
the iterative procedure of determining param-
eters.

- Final values of parameters somewhat depend
on initial values, which is the case with all
non-linear fitting methods.

3. APPLICATION OF THE IDL CODES
TO OBSERVED SNR PROFILES

We applied our numerical method to several
shell SNRs observed with Effelsberg radio telescope
in Germany (Reich et al. 1984, Reich et al. 1990,
Fuerst et al. 1990) and from the MOST super-
nova remnant catalogue (MSC). Observations given
in MSC were made with Molonglo Observatory Syn-
thesis Telescope (MOST) in Australia that operates
at 843 MHz (Whiteoak and Green 1996).

Firstly, FITS (Flexible Image Transport Sys-
tem) images of SNRs have been downloaded from
web-sites of the above databases (Effelsberg and
MOST).1 Secondly, mean radial emission profiles
were extracted from the FITS files using programs
”SAOImage DS9” and ”Funtools”.2 With ”Fun-
tools”, it is possible to exclude unwanted regions
from a FITS image and to subtract a background
prior to calculating the mean radial emission pro-
file.

1http://www.mpifr-bonn.mpg.de/survey.html, http://www.physics.usyd.edu.au/sifa/Main/MSC

2http://hea-www.harvard.edu/RD/ds9/, http://hea-www.harvard.edu/saord/funtools/

81



S. OPSENICA and B. ARBUTINA

Fig. 9. Five shell SNRs whose mean radial emission profiles were fitted well. From left to right: excluded
regions, background region, annuli regions, fitted mean radial emission profile. From up to down: SNR G17.8-
2.6, SNR G54.4-0.3, SNR G127.1+0.5, SNR G132.7+1.3, SNR G332.0+0.2. Graphs: angular dimensions
in radians are given on abscissas, intensity of emission in Jy/sr on ordinates. Observed (mean) profiles are
depicted by ”X” symbols with error bars, while fitted theoretical profiles are plotted as solid lines. Mean radial
emission profile of the SNR G54.4-0.3 is fitted by the model with radial magnetic field, while profiles of the
other SNRs are fitted by the model with constant emissivity. Out of these five SNRs, only SNR G332.0+0.2
is from the MOST catalogue, while the others are from the Effelsberg survey.
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In order to obtain the mean radial emission
profile, we first exclude unwanted regions, i.e. re-
gions that do not belong to an SNR, but are close
or within its boundaries. We achieve this by using
polygonal and circular shapes in DS9. We determine
a background by an annulus region in DS9. The
background region should be just beyond the outer
boundary of an SNR. Then, we make annular regions
in DS9 that consist of concentric rings and are cen-
tered at approximate SNR center (in our case, an
angular distance between adjacent rings was chosen
to be HPBW/2). Finally, Funtools averages pixel
value over those annular regions and subtract aver-
age value of a pixel within a background region from
each counted annular value (both of that without
taking excluded regions into account) and a mean ra-
dial emission profile is calculated. Data point units
of that profile are the same as tabular units in the
corresponding FITS file.

Tabular units in Effelsberg FITS files were
mK (miliKelvin). Conversion to units Jy/sr (Jan-
sky/steradian) was made by multiplying tabular val-
ues by the factor 10−3 × 1026 × 2kν2

c2 = 1023 × 2kν2

c2 ,
where k = 1.38 × 10−23 J

K , ν = 2.695 × 109 Hz

and c = 3 × 108 km
s . The tabular units in FITS

files from the MOST SNR catalogue were Jy/beam.
Conversion to units Jy/sr was made using the for-
mula (Kameno 2007):

(
Iν

Jy/sr

)
= 3.75479× 1010 ×

(
HPBWmaj

arcsec

)−1

×(
HPBWmin

arcsec

)−1

×
(

S
Jy/beam

)
,

(15)
where HPBWmaj and HPBWmin are HPBWs along
major and minor axes (MOST is a synthesis telescope
that has asymmetrical power pattern). To convert
Kelvins to Jy/beam one can use formula (Kameno
2007):

(
TB
K

)
= 1.222 × 106 ×

(
HPBWmaj

arcsec

)−1

×(
HPBWmin

arcsec

)−1

× (
ν

GHz

)−2 ×
(

S
Jy/beam

)
.

(16)

Sensitivity of the Effelsberg observations is 50
mK (20 mJy/beam), while sensitivity of the MOST
telescope is 2 mJy/beam. Errors of mean profile
data points were calculated as sum of errors that
are derived from these sensitivities, and errors that
are calculated by the program ”Funtools” during the
process of extracting mean profiles:

ΔIMean profile
ν = ΔISensitivity

ν + ΔIFuntools
ν . (17)

The appropriate model was chosen and fit-
ted to each of the extracted mean radial emission
profiles. Power pattern approximation used in the
process of fitting was Gaussian. Effelsberg HPBW
was 4.3 arcmin. For the MOST, HPBW is not con-
stant along different axes but is given by HPBW =
43 arcsec × 43 arcsec · cos δ where δ is a declina-
tion of observed point on celestial sphere. Because
of that, we used ”effective” HPBW that is equal to√

HPBWmaj · HPBWmin, or:

HPBWeff =
√

43 arcsec× 43 arcsec · cos δ, (18)

while δ was taken to be a declination of center of the
considered SNR.

4. RESULTS AND CONCLUSIONS

To test the code with real SNRs, we searched
the two databases mentioned above for all SNRs
marked as spherical (with only one value for radius
listed). Out of ten SNRs whose mean radial emission
profiles were fitted, profiles of five were fitted well.
Other five are either weak radio-continuum emitters
(G180.0-1.7, G294.1-0.0, G299.6-0.5, G321.9-1.1), or
our models seem to be inadequate (G359.1-0.5). The
five well fitted SNRs and their mean radial emission
profiles are shown in Fig. 9. Parameters which are
obtained from the fit are shown in Table 1. We also
estimated flux densities of these SNRs at the fre-
quency of 1 GHz using formula:

Table 1. Parameters of five shell SNRs whose mean radial emission profiles were fitted well.

SNR α ν [GHz] Cν

[Jy
sr

]
θ1 [rad] θ2 [rad]

(from Green’s (observed (from fit) (from fit) (from fit)
catalogue) frequency)

G17.8-2.6 0.3? 2.695 (3.5 ± 0.7) · 107 (2.5 ± 0.3) · 10−3 (4.0 ± 0.2) · 10−3

G54.4-0.3 0.5 2.695 (1.7 ± 0.3) · 107 (4.7 ± 0.3) · 10−3 (6.8 ± 0.2) · 10−3

G127.1+0.5 0.45 2.695 (1.1 ± 0.4) · 107 (5.2 ± 0.6) · 10−3 (7.9 ± 0.5) · 10−3

G132.7+1.3 0.6 2.695 (6.4 ± 0.9) · 106 (8.7 ± 0.6) · 10−3 (1.38 ± 0.05) · 10−2

G332.0+0.2 0.5 0.843 (1.4 ± 0.1) · 109 (1.25 ± 0.03) · 10−3 (1.70 ± 0.02) · 10−3
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Table 2. Parameters θ1 and θ2 in arcminutes and flux densities of analysed SNRs.

SNR θ1 [arcmin] θ2 [arcmin] Sν [Jy] Sν [Jy] S1 GHz [Jy] S1 GHz [Jy]
(from fit) (from fit) (calculated) (observed) (calculated) (from Green’s

catalogue)
G17.8-2.6 8.8 ± 0.8 13.6 ± 0.6 3 ± 2 3.4 ± 0.9 5 ± 3 ? 4.0?
G54.4-0.3 16.2 ± 0.8 23.5 ± 0.7 11 ± 4 11 ± 2 18 ± 7 28
G127.1+0.5 18 ± 2 27 ± 2 8 ± 5 8 ± 3 12 ± 8 12
G132.7+1.3 30 ± 2 47 ± 2 26 ± 9 26 ± 9 50 ± 20 45
G332.0+0.2 4.29 ± 0.09 5.85 ± 0.06 8 ± 2 8.5 ± 0.5 7.8 ± 1.2 8?

S1 GHz = Sν

( ν

1 GHz

)α

, (19)

where Sν is the flux density at frequency ν and α is
spectral index. Note that these flux densities Sν and
S1 GHz (labeled as ”calculated” in Table 2) do not
represent real flux densities directly obtained from
observations. They are calculated from the fit, using
Eqs. (2), (4) and (19).

The real flux densities at the observed fre-
quency ν (labeled as ”observed” in Table 2) are also
determined, this time by summing pixel values over
inner circles of the background regions, multiplied
by solid angle of one pixel. In the case of SNRs
G127.1+0.5 and G132.7+1.3 where excluded regions
exist within an SNR, we filled these ”gaps” with av-
erage values of a pixel around borders of these ex-
cluded regions. Background subtraction, conversion
of units and error calculation were performed in the
same manner as in the case of calculating mean pro-
files. Spectral indices α and values of flux densities
S1 GHz that we compared our calculated values to,
are taken from ”A Catalogue of Galactic Supernova
Remnants” (Green 2009).3

We conclude that good results are obtained in
five of ten considered cases, which justify the use of
our code for remnants that are bright (so that obser-
vational errors are not large) and spherically sym-
metric enough. Application of our code to a larger
sample of SNRs is planned for future work.
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Prethodno saopxteǌe

Napisani su IDL kodovi koji slu�e za
fitovaǌe sredǌeg profila ǉuskastog ostatka
supernove dobijenog radio-posmatraǌima jed-
nim od dva teorijska modela emisije. Mode-
li koji su razmatrani su: 1) ǉuska sa kon-
stantnom emisivnox�u i 2) ǉuskasti izvor
sinhrotronskog zraqeǌa sa radijalno orijen-
tisanim magnetnim poǉem. Kodovi su pri-

meǌeni na nekoliko posmatranih ostataka
supernovih. U pet razmatranih sluqajeva
dobijeni su dobri rezultati, xto oprav-
dava korix�eǌe datog koda za ostatke koji
su dovoǉno sjajni (tako da posmatraqke
grexke nisu velike) i u dovoǉnoj meri sfer-
nosimetriqni.
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