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SUMMARY: The Nekhoroshev theorem considers quasi integrable Hamiltonians
providing stability of actions in exponentially long times. One of the hypothesis
required by the theorem is a mathematical condition called steepness. Nekhoroshev
conjectured that different steepness properties should imply numerically observable
differences in the stability times. After a recent study on this problem (Guzzo et
al. 2011, Todorović et al. 2011) we show some additional numerical results on
the change of resonances and the diffusion laws produced by the increasing effect of
steepness. The experiments are performed on a 4-dimensional steep symplectic map
designed in a way that a parameter smoothly regulates the steepness properties in
the model.
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1. INTRODUCTION

Providing effective stability estimates in the
solar system has been an intriguing task since
many years, decades and even centuries. Significant
progress on this issue enabled the Hamiltonian per-
turbation theory with its two most outstanding the-
orems: KAM and the Nekhoroshev theorem which,
under certain conditions, are able to provide stabil-
ity in very long times. Good candidates in the solar
system for the Nekhoroshev like stability are recog-
nized in the neighborhood of the L4 and L5 stability
points (Celletti and Giorgilli 1991, Efthymiopoulos
2005, Lhotka et al. 2008, Giorgilli and Skokos 1997)
and in some regions of the asteroid belt (Pavlović
and Guzzo 2008, Morbidelli and Guzzo 1997, Guzzo
and Morbidelli 1996, Guzzo et al. 2002).

The Nekhoroshev theorem applies to analytic,
slightly perturbed Hamiltonians whose integrable ap-
proximations are non degenerate functions satisfying
a mathematical condition called steepness. We ob-
serve a model of a steep symplectic map (defined in

Guzzo et al. 2011) in order to show the influence of
steepness on the resonant structure and the stability
properties of actions. In addition to the perturbing
parameter ε, the model also contains a parameter
m that smoothly changes the steepness properties in
the system. The goal of this research is to present a
change of the diffusion laws caused by the increasing
steepness effects in accordance with the Nekhoroshev
theorem. The system is investigated numerically us-
ing methods developed in the last decade (Guzzo et
al. 2002, Lega et al. 2003, Froeschlé et al. 2005).
For five different values of the steepness parameter
m, we observe the dependence between the diffusion
coefficient D and the perturbation ε. The obtained
results on diffusion confirm the expectations on the
stabilizing steepness effects. Due to numerical limita-
tions the nature of this change could not be properly
estimated. In Todorović et al. (2011) this problem
was observed from another aspect and it was shown
that the relation between steepness and diffusion has
an exponential character.
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The paper is organized as follows: In Section 2
we introduce the Nekhoroshev theorem and the main
definitions of steepness; the model studied in the pa-
per is defined and explained in Section 3. The Arnold
web of the model and its changes while changing the
two parameters (m and ε) are described in Section
4. In Section 5 we give a short description of the
resonant dynamics and the algorithm for the diffu-
sion coefficient computation. Section 6 contains the
numerical results about the influence of the parame-
ter of steepness on the diffusion laws, while the final
conclusions are given in Section 7.

2. THE NEKHOROSHEV THEOREM

One of the main results of the Nekhoroshev
theorem considers stability estimates in quasi inte-
grable Hamiltonians:

H(I, ϕ) = H0(I) + εH1(I, ϕ) (1)

where I × ϕ ∈ D × Tn, D ⊆ Rn are the action-
angle variables, H0(I) is the integrable approxima-
tion and H1(I, ϕ) the perturbing function generated
by a small parameter ε. In the case of zero perturba-
tion (ε = 0), the system is integrable and reveals triv-
ial motions: the actions are constant and the angu-
lar variables have constant frequencies. Already for
small perturbations the integrability brakes down.
The actions are not constant anymore, but they re-
main close to their initial values in finite times. The
Nekhoroshev theorem provides a finer estimate of
these changes and a deeper insight into the dynami-
cal nature of Hamiltonian system (1).

The theorem states that if the Hamiltonian
function H is analytic and the integrable approxima-
tion H0(I1, .., In) is a non degenerate steep function,
then there exists a critical ε0, such that ∀ε < ε0,
every initial condition (I, ϕ) ∈ D × Tn is bounded
with:

|I(t)− I(0)| < cεa (2)
in times such that

|t| < d exp(
ε0

ε
)b (3)

where a, b, c and d are some suitable positive con-
stants which depend only on H0.

The simplest examples of steep functions are
given with convex, quasi-convex and 3-jet functions.
We say that a real analytic function h:

h : D → Rn

I → h(I)

where D ⊆ Rn is open and bounded and u ∈ Rn, is:
i) Convex at I ∈ D if the only real solutions of

the equation:
n∑

i,j=1

∂2h

∂Ii∂Ij
(I)uiuj = 0 (4)

is the trivial solution u = 0.

ii) Quasi-convex at I ∈ D if the only real solution
of the system:

n∑

i=1

∂h

∂Ii
(I)ui = 0

n∑

i,j=1

∂2h

∂Ii∂Ij
(I)uiuj = 0

(5)

is the trivial solution u = 0.

iii) Satisfies the 3-jet condition at I ∈ D if the
only solution of the system

n∑

i=1

∂h

∂Ii
(I)ui = 0

n∑

i,j=1

∂2h

∂Ii∂Ij
(I)uiuj = 0

n∑

i,j,k=1

∂3h

∂Ii∂Ij∂Ik
(I)uiujuk = 0

(6)

is the trivial solution u = 0.
The three listed cases are only examples of

steep functions, while the exact definition of steep-
ness is more implicit and can be found in Nekhoro-
shev (1977). It is expected that the most stable ones
are the quasi-convex functions. This conjecture was
numerically checked in Guzzo et al. (2011). It is
also expected that besides the perturbation, steep-
ness also plays a role in the dynamics. In terms
of the exponential stability, it would mean that the
exponent b in Eq. (3) increases as the system be-
comes steeper. Even though it is expected that these
changes could be numerically confirmed, such an ex-
periment is a very challenging task, since it considers
changes in the slow Arnold diffusion, a phenomenon
which is already difficult to observe.

The goal of this investigation is to verify, if
possible, changes in stability times provoked by the
increasing steepness effects. The experiments are
done on a model defined by a 4-dimensional sym-
plectic map in its non-convex steep (3-jet) domain.

3. THE MODEL PROBLEM

Symplectic maps are a very useful tool in
Hamiltonian dynamics. In general, they present
some kind of discrete Hamiltonian systems. Hav-
ing the properties of the corresponding Hamiltonian
and, at the same time, a relatively simple form, they
allow a large spectrum of numerical investigations.
The model we study (defined in Guzzo et al. 2011)
is a 4-dimensional symplectic map φ :

φ : R2 × T2 → R2 × T2,

(I1, I2, ϕ1, ϕ2) → (I ′1, I
′
2, ϕ

′
1, ϕ

′
2)
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such that:

ϕ′1 = ϕ1 + I1

ϕ′2 = ϕ2 − I2 + mI2
2

I ′1 = I1 − ε
sin ϕ′1

(cos ϕ′1 + cos ϕ′2 + c)2

I ′2 = I2 − ε
sin ϕ′2

(cos ϕ′1 + cos ϕ′2 + c)2
.

(7)

where (I, ϕ) are the action-angle variables (I, ϕ) ⊆
D×Tn with D ⊆ Rn open and bounded. In addition
to the perturbing parameter ε, the map contains a
parameter m which regulates the intensity of steep-
ness.

We remind that the above map corresponds
to the 1-time flow of the Hamiltonian whose unper-
turbed part is:

h(I1, I2, I3) =
I2
1

2
− I2

2

2
+ m

I3
2

3
+ 2πI3 (8)

and the perturbing function is:

f =
1

cos ϕ1 + cos ϕ2 + c
(9)

and has a full Fourier spectrum. The application of
the Nekhoroshev theorem to symplectic maps was
illustrated in Guzzo (2004).

In the following, we verify the convexity,
quasi-convexity and 3-jet condition for the Hamil-
tonian (8).

i) The convexity of the Hamiltonian (8) we check
by inserting this function into the equation (4)
that becomes:

u2
1 − (1− 2mI2)u2

2 = 0 (10)

and has trivial solutions only for

1− 2mI2 < 0 ⇔ I2 >
1

2m
. (11)

In this domain the function h is convex, while
for I2 < 1/2m the convexity is not satisfied.

ii) The system (5) with h equal to (8) is:

u2
1 − (1− 2mI2)u2

2 = 0 (12)
I1u1 + I2(mI2 − 1)u2 + 2πI3u3 = 0

and has trivial solutions for I2 > 1/2m which
implies quasi convexity in this domain.

iii) Finally, the three equations determining the
3-jet condition for the Hamiltonian (8) are:

u2
1 − (1− 2mI2)u2

2 = 0 (13)
I1u1 + I2(mI2 − 1)u2 + 2πI3u3 = 0
2mu3

2 = 0.

When m = 0 the system has non trivial solu-
tions in all the three cases, i.e. it does not satisfy

any of the three classes of steepness. For m 6= 0 the
system has trivial solutions only and it satisfies the
3− jet condition.

It is easy to control the intensity of steepness
by a simple variation of the steepness parameter m.
With a parameter that directly acts on the steepness
properties, the map (7) is a promising candidate for
experiments we would like to perform. We are inter-
ested to observe the influence of the steepness param-
eter on the dynamics in the non convex (I2 < 1/2m)
steep (m 6= 0) domain of the model.

4. THE ARNOLD WEB OF THE MODEL

The Arnold web is a peculiar low measure set
of quasi integrable non degenerate systems nested in
the dense set of KAM tori. While the initial condi-
tions taken on KAM tori are stable at infinite times,
the Arnold web is the source of instabilities in the
system. The pioneering work on this topic was done
by Arnold (Arnold 1964) who used a simple Hamilto-
nian to illustrate a ”mechanism for instability” with
the possibility for a drift of actions along a resonance.
Following this description the term Arnold diffusion
is a name for related phenomena. Even though the
exact analytical description of such motions still does
not exist, a large amount of numerical research is
done confirming the possibility for the Arnold-like
diffusion along a resonance in many dynamical mod-
els, mainly given by symplectic maps (Froeschlé et
al. 2005, Guzzo et al. 2005, Guzzo et al. 2006,
Todorović et al. 2008, Guzzo et al. 2009, Guzzo et
al. 2011).

The projection of the Arnold web on the fre-
quency space satisfies the so called resonance condi-
tion: ∑

kiωi = 0, i = 1, ..., n. (14)

Applied to the Hamiltonian (8) the above equation
gives the generic form of resonances in our model:

k1I1 + k2(mI2
2 − I2) + 2k3π = 0 (15)

with k1, k2, k3 ∈ Z. For m 6= 0 the set (15) corre-
sponds to a set of parabolas, while for m = 0 the
resonances are linear since the quadratic term in ac-
tions k2mI2

2 coupled to the steepness parameter m
disappears.

One of the most useful numerical tools used
to obtain the structure of the Arnold web is the
fast Lyapunov indicator- FLI (Froeschlé et al. 1997,
Froeschlé et al. 2000, Guzzo et al. 2002). The FLI
reflects the growth of a tangent vector v of a given ini-
tial vector x in a fixed time t : FLIt(x, v) = log ‖vt‖.
FLI recognizes not only the ordered from chaotic mo-
tions, but it also distinguishes between regular reso-
nant motions and motions on KAM tori. Moreover,
FLI is able to make the difference between different
kinds of chaotic orbits, revealing the very fine struc-
ture inside the chaotic domain composed by stable
and unstable manifolds of the hyperbolic invariant
manifolds (Lega et al. 2010).

27



N. TODOROVIĆ

Using the mentioned properties, with FLI it
is possible to visualize the resonant structure of the
model (the technique is described in Froeschlé et
al. 2000). Fig. 1 shows the Arnold web of the
model obtained with FLI computed for 1000 iter-
ations on a 500 × 500 grid of initial actions regu-
larly spaced on I1 × I2 = [0, π]× [0, π] and for fixed
initial angles ϕ1 = 0, ϕ2 = 0, and tangent vectors
(vI1 , vI2 , vϕ1 , vϕ2) = (1, 1, 0.5(

√
5− 1), 1).

In the top three plots, the perturbation is
ε = 0.03, the system is dominated by regular or-
bits marked by dark gray in the figure (red in the
color version). In the lower three plots the pertur-
bation is higher, ε = 0.1 and the size of the chaotic
zone (light gray in the plot and yellow in the color
version) considerably increases. In the two left plots
m = 0: the system is not steep (studied in Guzzo et

al. 2006). The bending of the resonances is appre-
ciable already for m = 0.1 plotted on the two middle
panels and becomes evident in the two right plots
where the parameter of steepness is m = 0.3. The
two middle panels show only the steep non convex
domain. For m = 0.3 (Fig. 1, right panels) only the
region below the white (yellow in the color version)
dashed line I2 = 1/2m ∼ 1.67 is steep and non con-
vex, while the region above the line is quasi-convex.

The presence of KAM tori in the quasi-convex
region (above the dashed line) is higher than for the
steep non-convex one (below the dashed line); this ef-
fect is more evident in the bottom right plot, where
the system is generally more chaotic. This is in agree-
ment with the Nekhoroshev statement of greater sta-
bility in the quasi-convex domains.

Fig. 1. The FLI chart for the system (7) obtained with FLI computed with 1000 iterations on (I1, I2) =
[0, π]× [0, π]. The dark gray orbits represent the stable KAM tori background, while the white lines represent
resonances in the set (15) reflecting the structure of the Arnold web. In the top plots ε = 0.03, the dynamics
is dominated by regular orbits (dark gray). In the bottom plots ε = 0.1 and the system has more chaotic
orbits (light gray). In the left plots m = 0 the system is not steep and not convex. The system is influenced
by a week steepness effect with m=0.1 in the middle two plots and with a stronger steepness (m = 0.3) in
the right two plots. In the right two plots we notice a certain difference in the stability for the steep non
convex region which is below the dashed line and the quasi-convex region above the line.
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When the perturbation ε increases the num-
ber of tori decreases and resonances start to over-
lap according to the well known Chirikov criterion.
We will call εc the critical value of the perturbing
parameter for which the dynamics is dominated by
the overlapping of resonances, i.e. the system en-
ters the Chirikov regime. We say that the system is
in a Nekhoroshev like regime when the dynamics is
dominated by KAM tori, i.e. for ε < εc. We check
in what follows the influence of the parameter m on
this transition in order to show that εc depends also
on the steepness parameter. In the same domain as
for the Fig. 1, we count the number of chaotic or-
bits (FLI > 4.5 for 1000 iterations) and observe its
change with m.

The result is plotted in Fig. 2. The three lines
show the value of ε for which 50 %, 60% and 70%
of orbits respectively are chaotic. The plot shows
that for m < 0.1, the critical ε is almost constant:
εc ∼ 0.1. For m ∈ [0.1, 0.3] the more stable quasi-
convex region (above the dashed line in the Fig. 1
right) enters the [0, π]×[0, π] domain, which increases
the critical value to εc ∈ [0.4, 1]. For m > 0.3, a low
order resonance I2 = 1/m with its strong chaotic
neighborhood enters the observed domain and εc de-
creases again. The experiment shows that εc is not
affected by m for lower values of the steepness pa-
rameter. At some point, approximately at m ∼ 0.1,
the critical ε becomes significantly influenced by the
steepness parameter.

 0.01

 0.1

 1

 10

 1e-04  0.001  0.01  0.1  1

ε c

m

70% chaotic orbits
60% chaotic orbits
50% chaotic orbits

Fig. 2. The critical ε against m for m ∈ [10−4, 1].
The three lines correspond to the situations when
50%, 60% and 70% of orbits in the action domain
[0, π]× [0, π], grid 500× 500 are chaotic (FLI > 4.5
for 1000 iterations). For m < 0.1 : εc ∼ 0.1. For
m ∈ [0.1, 0.3] the more stable quasi-convex domain
enters into the observed region and εc increases. For
m > 0.3, εc decreases again since a strong resonance
(I2 = 1/m) enters the observed domain.

Fig. 3. For a non convex system (m=0, the left panel) the fast drift line is contained in the resonance and
provokes fast diffusion along it. The steepness effect bends the resonances to a parabola, while the fast drift
line remains on the 1-1 direction (m=0.3, the right panel). This is basically a mechanism responsible for the
slowing down effect of steepness. The arrow on both panels shows the direction of the fast drift line.

29



N. TODOROVIĆ

5. DIFFUSION ALONG THE
RESONANCE AND THE DIFFUSION
COEFFICIENT COMPUTATION

An important role in the resonant dynamics
plays the so called fast drift line. The position of the
fast drift line with respect to the resonance affects
the diffusion properties in the resonance. A detailed
description of this issue can be found in Nekhoroshev
(1977) and Morbidelli and Guzzo (1997). The model
we study is designed in such a way that the position
of the fast drift line is directly related to the steep-
ness properties i.e. the steepness parameter m. The
resonance we observe is:

mI2
2 − I2 + I1 = 0. (16)

In the resonant set (15) it is the (1, 1, 0) resonance.
For the non convex case (when m = 0) this resonance
belongs to a web of resonances such that its fast drift
line is contained in the resonance, which provokes
fast diffusion along it. This situation is plotted in
the left panel of the Fig. 3 where the arrow repre-
sents the fast drift line. The fast diffusion along the
resonance (16) for this case was observed and stud-
ied by Guzzo et al. (2006). As the parameter m in-
creases, the resonance becomes parabolic, while the
fast drift line remains on the 1 − 1 direction. Their
mutual collinearity is lost which slows down the dif-
fusion. In the right panel of the Fig. 3 there is a
segment of the FLI chart with the same resonance
and its fast drift line (marked with an arrow which
lies out of the resonance on the 1-1 direction) when
the system is steep, for m = 0.3. The diffusion along
the resonance in this situation is significantly slower
than for the non convex case.

The computation of the diffusion coefficient

As already mentioned, the motion in the reso-
nance does not have an analytical solution. We pro-
vide estimates on its dynamics statistically, treating
it as a Brownian type motion. The algorithm we
use to compute the diffusion coefficient is taken from
Lega et al. (2003) and Froeschlé et al. (2005).

For a set of N initial actions (Ij
1(0), Ij

2(0)) and
ϕj

1,2 = 0 with j = 1, N properly chosen (FLI(I) >

1.5 log t) on the resonance (16) the map is iterated
10k times. The diffusion coefficient is defined as the
mean square linear increase of actions with respect to
their initial values. Numerically, it is the best linear
fit of the quantity:

S1(t) =
1
N

∑

j=1,N

(Ij
2(t)− Ij

2(0))2 + (Ij
1(t)− Ij

1(0))2

(17)
where (Ij

1(t), Ij
2(t)) are the actions after the iteration

time t.
An alternative way, more convenient from the

numerical point of view is to observe only the restric-

tion of the motion to the plain s given by:

s = {(I1, I2, ϕ1, ϕ2) : (ϕ1, ϕ2) = (0, 0)}.
Again, the diffusion coefficient D is defined as the
best linear fit of the mean square linear increase of
the diffusing orbits with respect to their initial val-
ues, taking into account only their crossings with the
plain s i.e. it is the coefficient of the regression line
fitted through:

S2(n∆t) =

=
1

Mn

∑

i:|ϕi
1+ϕi

2|<δ

(I2(t)− I2(0))2 + (I1(t)− I1(0))2.

(18)

The total iteration time t is divided into a cer-
tain number of subintervals ∆t. Mn is the number
of orbits which cross the plain s during the n-th in-
terval i.e. satisfy the condition |ϕi

1 + ϕi
2| < δ. The

crossing of the orbit (Ii
1, I

i
2) and the plain s actually

corresponds to the condition (ϕi
1, ϕ

i
2) = (0, 0). Due

to numerical reasons, this condition is weakened and
we observe the crossings of the orbits with the δ slices
of the plain s. The size of the slices is chosen ac-
cording to the number of initial orbits and iteration
times.

The two ways to compute the diffusion coef-
ficient reflect the same phenomena and should give
approximately the same values of the diffusion coef-
ficient. We denote with DEI the diffusion coefficient
computed from the quantity S1(t) and by DIP the
one obtained from S2(n∆t). Fig. 4. shows one ex-
ample where the two ways of the diffusion coefficient
computation show a good agreement. The upper line

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  5e+06  1e+07  1.5e+07  2e+07  2.5e+07  3e+07  3.5e+07

time

ε=0.0003

DEI= 1.62E-008 

DIP= 1.45E-008  

Fig. 4. The top curve represents the change
of the quantity S1(t) giving the diffusion coefficient
DEI = 1.62×10−8. A close value DIP = 1.45×10−8

shows the lower S2(n∆t) line where only the inter-
section points of the diffusing orbits and the action
plain are considered (the parameters for this plot are
m = 0.001 and ε = 0.0003).
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shows the quantity S1(t) and the corresponding dif-
fusion coefficient DEI = 1.62 × 10−8. The lower
line shows the change of the quantity S2(n∆t) in
time and gives a very close value for the diffusion
coefficient DIP = 1.45 × 10−8. The parameters
are m = 0.001, ε = 0.0003 and iteration time is
t = 3.5× 107.

6. THE RESULTS ON DIFFUSION

It is very difficult to confirm numerically the
exponential stability provided by the Nekhoroshev
theorem. Even more difficult would be to observe
the change of those exponential laws as the steep-
ness effect increases. The numerically obtained rela-
tion between the diffusion coefficient D and ε usually
covers a small interval in ε which is not trustful for
a good exponential fit. In previous works on the
Nekhoroshev stability (Guzzo et al. 2005, Guzzo et
al. 2006, Todorović et al. 2008) this dependence
was usually fitted by two or more power laws, which
increase as the perturbation decreases. This results
is interpreted as a strong indication for an exponen-

tial dependence. In order to recover the expected
changes in the diffusion speed with steepness, we ob-
serve the relation between the diffusion coefficient D
and the size of the perturbation ε for five different
values of the steepness parameter m. We expect to
observe the increase of the power laws with growth
of the parameter m.

The choice of the initial conditions to compute
diffusion should be carried out carefully. We choose a
set of N initial conditions in the close neighborhood
of the point (I0

1 , I0
2 ). The value I0

1 = ω1 is taken as
a strong irrational number ω1 = π/3

√
3 ∼ 0.604 1.

The corresponding action I0
2 lying on the resonance

(16) is I0
2 = (1 − √1− 4mω1)/2m. In this compu-

tation, the number of initial orbits N goes from 200
for the slower diffusion up to 1000 for fast diffusing
orbits. The iteration times range from 105 up to
1010.

The results of the computation are presented
in Fig. 5. The plot shows the change of log10 ε
against log10 D for five different values of the param-
eter m = {0.001, 0.01, 0.03, 0.1, 0.3}. For the low-
est steepness parameter m = 0.001 we computed
16 values of the diffusion coefficient in the interval
ε ∈ [9× 10−6, 5× 10−4] with two fitted power laws

-16

-14

-12

-10

-8

-6

-4

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

lo
g1

0(
D

)

log10(eps)

2.05

4.07

2.32

4.50

3.15

1.95
2.45

3.70

4.49
6.18

4.42

2.75

m= 0.001
m= 0.010
m= 0.030
m= 0.100
m= 0.300

4.55

Fig. 5. The change of the diffusion coefficient D against the perturbation ε for five different values of
the steepness parameter m = {0.001, 0.01, 0.03, 0.1, 0.3}. For every data set (every fixed m) the plot shows a
broken power law which indicates an exponential dependence. Increasing the steepness effect should increase
the values of the fitted power laws. Each of the plotted data sets corresponds to another interval of ε which
prevents their direct comparison. Taking into account that the power laws increase as the perturbation
decreases, the computed results give an indirect confirmation of the expected result.

1Being close to a rational frequency value means close to another resonance. The orbits could eventually diffuse along it which
would give a wrong result on the diffusion coefficient along the resonance we study.
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4.55 and 2.05. For m = 0.01 again 16 values of the
diffusion coefficient are computed in the interval ε ∈
[10−4, 0.007] with two power laws 4.07 and 2.32. The
third data set in the plot corresponds to the steep-
ness parameter fixed on m = 0.03 where 22 values of
D are computed in the interval ε ∈ [2× 10−4, 0.015].
The three fitted power laws are 4.50, 3.15 and 1.95.
For the steepness parameter m = 0.1 another 22 val-
ues of the diffusion coefficient are computed in the in-
terval ε ∈ [6×10−4, 0.05] with three power laws 4.49,
3.70 and 2.45. Along the line that corresponds to the
power 4.49 we notice a significant variation around
the fitted line which may suggest oscillations in D for
lower values of ε. The possibility that this oscillation
is a consequence of the numerical instabilities is also
not excluded. Finally, for the highest observed steep-
ness effect with m = 0.3 we computed 20 values of
the diffusion coefficient in ε ∈ [1× 10−3, 0.1]. Three
power laws: 6.18 , 4.42 and 2.75 are fitted through
this data set. Again a certain oscillation around the
fit 6.18 can be noticed.

For every observed data set we obtain very
similar values of the power laws (around 2, 4 and
only one close to 6), which gives the impression that
they remain constant, opposite to our expectations.
Taking into account that for every m we observe dif-
ferent intervals in ε (the intervals in ε shift to higher
values as m increases) the power laws for different
m can not be directly compared. The reason we are
limited in the ε intervals are only numerical. On the
other hand, we already mentioned that the power
laws increase as the perturbation decreases.

This leads to the conclusion that the expected
increase of the power functions with m is present-but
is not directly observable. In this way our expecta-
tions on the stabilizing steepness effect are indirectly
confirmed.

7. CONCLUSIONS

The change of the resonant structure, stabil-
ity and the diffusion laws as a consequence of the
increasing steepness effect is observed. The experi-
ment is performed on a 4-dimensional steep symplec-
tic map using methods developed in the last decade.
The resonant structure and the global stability ev-
idently change as the effect of steepness increases.
The obtained results on the diffusion laws, although
limited numerically, give a strong indication that
steepness plays a significant role in the change of the
diffusion speed.
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Froeschlé, C., Guzzo, M. and Lega, E.: 2000, Sci-

ence, 289, 5487.
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UTICAJ PARAMETRA STRMOSTI NA EKSPONENCIJALNU
STABILNOST U MODELU PROSTORA. NUMERIQKI ASPEKTI
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Originalni nauqni rad

Nehoroxevǉeva teorema nesumǌivo
spada u jedno od najznaqajnijih dostignu�a
moderne nebeske mehanike. Uz hipotezu da
je hamiltonijanska funkcija analitiqka, da
je ǌen integrabilni deo nedegenerativan
tj. da zadovoǉava matematiqki uslov str-
mosti, teorema obezbe�uje stabilnost akcija
u eksponencijalno dugom vremenskom inter-
valu. Tako�e, Nehoroxev je u svom radu iz
1977. nagovestio da bi pove�aǌe strmosti
imalo za posledicu i ve�u stabilnost ak-
cija. Pomo�u numeriqkih metoda koje su
razvijene u posledǌoj deceniji, ova pret-
postavka je verifikovana. Korix�en je model

4-dimenzione simplektiqke mape koja zadovo-
ǉava hipoteze Nehoroxevǉeve teoreme i koja
pored poreme�ajnog parametra ε, sadr�i i
parametar m kojim se direktno regulixe in-
tenzitet strmosti. Za pet razliqitih vred-
nosti parametra strmosti m numeriqki je
merena zavisnost izme�u brzine difuzije
D du� odabrane rezonance i poreme�ajnog
parametra ε. Dobijeni rezultati ukazuju
na to da se stepen funkcije koja je fito-
vana kroz dobijene rezultate pove�ava sa
pove�aǌem parametra strmosti, te je na
taj naqin Nehoroxevǉeva pretpostavka nu-
meriqki potvr�ena.
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