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SUMMARY: In this paper some iteration factors families introduced previously
to solve the pure line transfer problem are generalized to the case when the back-
ground continuum is taken into account.The convergence properties of these factors
are discussed when they are applied to the solution of the two-level atom line trans-
fer problem in a constant and variable property media.
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1. INTRODUCTION

As a necessary step of many important astro-
physical problems, NLTE line transfer problems are
among the most difficult ones because of the non-
local, and, in general, non-linear coupling between
the radiation field and the excitation state of gas.
Due to the complexity of these problems, there is
still a great need for simple and efficient numerical
schemes for their solution.

At present, the line transfer problems
are mostly solved with the so called, Acceler-
ated/Approximated Λ iteration (ALI) methods.
They create a broad class of numerical schemes that
employ certain approximations together with the op-
erator perturbation technique in order to accelerate
the simplest iterative procedure, the so called Λ it-
eration, that solves the radiative transfer (RT) and
the statistical equilibrium equations (SE) in turn.
The approximations can be physical (e.g. the core
saturation assumption of Rybicki 1972) or numeri-
cal (e.g. the diagonal of the full Λ matrix (opera-
tor) of Olson et al. 1986). For the case of multi

level radiative transfer problems, which are strongly
nonlinear, ALI methods employ either linearization
(e.g. Scharmer and Carlsson 1985) or introduce ap-
proximate Λ operators directly into the SE equa-
tions in order to make them linear (precondition-
ing), as is the case with Multilevel Accelerated Λ
Iteration (MALI) method of Rybicki and Hummer
(1991). A recent review of ALI methods was given
in the paper of Hubeny (2003). Here, we shall point
out the Forth-and-Back Implicit Λ Iteration (FBILI)
method, an efficient method developed by Atanack-
ović-Vukmanović, Crivellari and Simonneau (1997),
whose solutions will be compared with those pre-
sented in this paper. By using the implicit repre-
sentation of the source function in the computation
of both incoming and outgoing radiation field inten-
sities, that are treated separately within a forth and
back approach, FBILI drastically accelerates the Λ
iteration resulting in an extremely fast convergence
to the exact solution. Its accuracy was checked for
the case of two-level-atom line transfer problems with
complete, as well as with partial frequency redistri-
bution, and for the case of multilevel atom line for-
mation problems with complete redistribution. Ap-

81



O. KUZMANOVSKA-BARANDOVSKA

plied first to the NLTE radiative transfer problems in
plane-parallel geometry, the FBILI method was gen-
eralized to spherically symmetric media in the paper
by Atanacković-Vukmanović (2003).

In this paper we follow another approach,
based on a simple iterative scheme that uses quasi-
invariant functions, the so-called iteration factors, in
order to speed up the most straightforward, but ex-
tremely slow, Λ iteration procedure. This is the It-
eration Factors method (IFM). The idea of using the
ratio of two moments of radiation field intensity in
the stellar atmosphere model calculations appeared
in the paper of Feautrier (1964), and was first ap-
plied by Auer and Mihalas (1970) in the form of
the variable Eddington factor (Kν/Jν) for the so-
lution of monochromatic transfer problem in plane-
parallel geometry. The IF method is developed for
solving the two-level atom line transfer problem by
Atanacković-Vukmanović and Simonneau (1994) and
extended to the more general multilevel atom prob-
lem by Kuzmanovska-Barandovska and Atanacković
(2010). In the above cited papers the profile func-
tion is considered depth-independent. In the case of
a variable-property medium or, more precisely, of a
depth-dependent profile function, somewhat differ-
ent definition of IFs families is required, as described
in papers by Atanacković-Vukmanović and Simon-
neau (1993, 1995). The latter is hereinafter referred
to as Paper I. Several iteration factors families were
defined and their convergence properties analyzed
when they were applied to the two-level atom line
transfer with no background continuum. In this pa-
per, a generalization is made to the case when the
continuum is taken into account. We investigate the
convergence properties of such a procedure consid-
ering both cases of a constant and depth dependent
profile function.

2. ITERATION FACTORS

We shall proceed from the well known form of
the RT equation for a static, plane-parallel medium:

µ
dIxµ(τ)

dτ
= (ϕx(τ) + β(τ))(Ixµ(τ)− Sx(τ)), (1)

where ϕx is the absorption line profile, β denotes the
ratio of continuum to the line opacity (β = χc/χl),
Ixµ is the specific intensity of the radiation field at
optical depth τ , x is the frequency displacement from
the line center in Doppler width units and µ is the
cosine of the angle between the photon path and the
outward normal. The total source function Sx(τ) is
given by:

Sx(τ) =
ϕx(τ)

ϕx(τ) + β(τ)
Sl(τ) +

β(τ)
ϕx(τ) + β(τ)

Sc(τ)(2)

where the line source function Sl(τ) is frequency in-
dependent for the case of complete redistribution and

the continuum source function Sc is assumed to be
equal to the Planck function B(τ).

For the two- level atom model Sl(τ) takes the
form:

Sl(τ) = εB(τ) + (1− ε)
∫ ∞

−∞
ϕx(τ)Jx(τ)dx, (3)

where Jx(τ) is the mean intensity of the radiation
field and the standard non-LTE parameter ε repre-
sents the probability that the photons are thermal-
ized by collisional deexcitation.

In the case of radiation transport by two-level
atoms, the dependence of the line source function on
its mean radiation field intensity is linear. The ex-
plicit form of the source function Eq. (3) enables
a straightforward definition of the relevant intensity
moments and the iteration factors as their ratios.
The procedure using IFs is as follows: At the be-
ginning of each iteration step the IFs are computed
from the formal solution of the radiative transfer
(RT) equation with the given (old) source function.
They are then used to close the moments of the RT
equation, whose solution gives the new and improved
value of the source function.

In general, the absorption-line profile ϕx de-
pends on the optical depth τ . As it was noted in
Paper I, with respect to the case ϕx = const. the
moment equations and the corresponding iteration
factors families have to be defined in a different way.
Following the procedure explained in Paper I we in-
tegrate Eq. (1) over angles by applying the opera-
tors

∫ 1

−1
..dµ and

∫ 1

−1
..µdµ, and then perform the fre-

quency integration within the range [−xN , xN ]. This
frequency interval has to be large enough as to in-
clude all the photons in the spectral line.

Since the integration over angles is performed
on the interval [-1,1], the obtained intensity moments
are considered ”full”. The system of moment equa-
tions containing the ”full” angle and frequency inte-
grated moments takes the form:

d

dτ
H = β(J − S) + (Jϕ − Sϕ), (4a)

d

dτ
K = βH + Hϕ, (4b)

where the following notation is used:

Q(τ) ≡
∫

Qx(τ)dx

and
Qϕ(τ) ≡

∫
Qx(τ)ϕx(τ)dx,

for the intensity and source function moments.
The system Eq. (4) is closed by means of three

types of iteration factors families. The most straight-
forward factors (denoted as family A) include the
generalized Eddington factor F , and the factors fJ
and fH that take into account the repartition of the
energy over frequencies within the line profile:
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F =
K

Jϕ
, fJ =

J

Jϕ
, fH =

H

Hϕ
. (5)

In the second (B) family of IFs, the factors
are defined so that the local, i.e. ”passive in trans-
fer” terms are isolated, and the iterations are per-
formed only on the non-local (”active in transfer”)
terms of the radiation field. Hence, apart from the
generalized factor F , the B-family contains f̃J and
f̃H that are the ratios of only non-local parts of the
corresponding intensity moments:

f̃J =
J̃

J̃ϕ

=
J − (S − M12

2 )
Jϕ − (Sϕ − M22

2 )
,

f̃H =
H̃

H̃ϕ

=
H − (S − M13

2 )
Hϕ − (Sϕ − M23

2 )
, (6)

where

Mnm =
∫

ϕ(n−1)
x (τ)Sx(τ)dx

∫
µ(m−2)e−τ(ϕx+β)µdµ.

The C-type factors take into account the non-
local nature of the radiation field, but also two-point
boundary nature of the RT process and the two-
stream model of radiation field using the inward and
outward intensity moments. Therefore, apart from
the generalized Eddington factor F, this family con-
sists of the following factors:

α+ =
β(J+ − S) + (J+

ϕ − Sϕ)

J+
ϕ − Sϕ

,

α− =
β(J− − (S −M12)) + J−ϕ − (Sϕ −M22)

J−ϕ − (Sϕ −M22)
,

µ+ =
H+ − S

2

J+
ϕ − Sϕ

,

µ− =
H− − (S

2 −M13)
J−ϕ − (Sϕ −M22)

,

Θ+ =
β(H+ − S

2 ) + (H+
ϕ − Sϕ

2 )

H+ − S
2

,

Θ− =
β(H− − (S

2 −M13)) + H−
ϕ − (Sϕ

2 −M23)

H− − (S
2 −M13)

.(7)

Another system of moment equations can be
derived by using the two-stream model of radiation
field. The outgoing I+

xµ and incoming I−xµ intensi-
ties and the corresponding moments are treated sep-
arately. By performing the µ-integration on the in-
tervals [-1,0] and [0,1] and then the frequency inte-
gration applying

∫
xN−xN

dx, the system takes the form:

+
d

dτ
H+ = β(J+ − S) + (J+

ϕ − Sϕ), (8a)

− d

dτ
H− = β(J− − S) + (J−ϕ − Sϕ). (8b)

The forth family (D) of factors we consider
here is used to close the system Eq. (8) of moment
equations. The factors are defined as the ratios of
two-stream intensity moments:

α± =
J±

J±ϕ
, Θ± =

H±

J±ϕ
. (9)

Being angle and frequency integrated, the it-
eration factors reduce the numerical description of
the problem to only two scalar moment equations.
Hence, the system Eq. (4) is transformed into the
following form:

d

dτ
H = E11H + E12K + V1, (10a)

d

dτ
K = E21H + E22K + V2, (10b)

and solved for the unknown moments K and H. Let
us note that the coefficients Eij and Vi depend on the
chosen iteration factors family (A, B or C). Similarly,
by the use of D family, system Eq. (8) is transformed
into two moment equations containing the unknown
moments H+ and H−:

d

dτ
H+ = G11H

+ + G12H
− + W1, (11a)

d

dτ
H− = G21H

− + G22H
+ + W2, (11b)

where the known iteration factors are contained in
the coefficients Gij and Wi. The solutions of the
systems Eq. (10) and Eq. (11) are used in the com-
putation of the improved values of Jϕ and the new
values of the source function that enter the next it-
eration step. In order to achieve fast convergence to
the exact solution, the iteration factors have to be
nearly independent from the initial solution.

3. CONVERGENCE PROPERTIES

In order to test the convergence properties of
the four families of iteration factors we solved the
problem of spectral line formation in a semi infinite
atmosphere with ε = 10−4 and β = 10−3 and for two
cases: a) B = 1 (Case 1) and b) B = B(τ) (Case 2).
For the sake of simplicity we assume pure Doppler
broadening so that the absorption line profile ϕx is
defined by a Gauss normalized profile function:
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ϕx(τ) =
1√

πδ(τ)
e−x2/δ(τ)2 , (12)

where x = (ν − ν0)/∆ν∗D is the frequency displace-
ment from the line center. It is expressed in fixed
frequency units ∆ν∗D equal to Doppler width at great
optical depths. The parameter δ(τ) is given by:

δ(τ) =
∆νD(τ)
∆ν∗D

. (13)

First, we assumed that ϕx is depth independent
(δ = 1) throughout the atmosphere since the ana-
lytical solutions for that case are known. Then, we
consider the general case of variable ϕx(τ).

The properties of the iterative procedure were
analyzed by means of three quantities (Auer et al.
1994) computed at each iteration step i:

Ri
c =

∣∣∣∣
Si − Si−1

Si

∣∣∣∣
max

, (14)

Ci
e =

∣∣∣∣
Si − S∞

S∞

∣∣∣∣
max

, (15)

T i
e =

∣∣∣∣
Si − S∞FBILI

S∞FBILI

∣∣∣∣
max

. (16)

Here, Rc is the maximum relative change, Ce is the
maximum relative convergence error, and Te is the
maximum relative true error, while S∞ and S∞FBILI
are the fully converged solutions obtained by a pre-
liminary long run with the IFM and the FBILI
method, respectively. The latter was used as the ref-
erence code so that we expressed the true accuracy
of the IFM solutions with respect to the solutions
obtained with the FBILI method using the same dis-
cretization in angles, frequencies, and optical depths.

The iterative procedure converged rapidly for
all four families of factors, reaching the maximum
relative correction Rc of about 10−5 for Case 1. As
expected, the convergence properties of various fam-
ilies are highly influenced by the degree of sophisti-
cation in their description of the physics of RT pro-
cess. This is illustrated in Table 1 where the number
of iterations needed to reach different values of max-
imum relative change Rc for all types of factors and
for both Case 1 and Case 2 is given. Using the most
straightforward A family of factors the usual conver-
gence criterion Rc ≤ 10−2 was fulfilled in 17 and 20
iterations for the Case 1 and Case 2, respectively,
while the convergence error of 1% (a measure of the
internal accuracy) is reached in 26 and 35 iterations
(see Table 2). When we iterate on ”active in trans-
fer” terms of radiation field (type B factors) only 11
and 14 iterations were needed, for two cases respec-
tively, to reach the maximum relative correction of
1%, and 16 and 24 iterations to reach the conver-
gence error of 1%. However, some instabilities may

occur due to small (or null) divisors. This can be
noticed in Fig. 1 where the variation of Rc, Te and
Ce with the iteration number for Case 1 and four
types of iteration factors is presented. We can see
in the graph for type B factors that although the
procedure reaches Rc ≤ 10−5 for Case 1, the insta-
bilities start at the very beginning of the iterative
procedure. Fig. 2 shows the variation of Rc, Te and
Ce with the iteration number for Case 2 and four
IFs families. Because of the instabilities the proce-
dure using B-type IFs can not reach the maximum
relative correction of 10−4 in this case.

Table 1. The number of iterations needed to achieve
the convergence for four iteration factors families (A
- D) and B = 1 (Case 1) and B = B(τ) (Case 2).
Constant profile function is assumed.

Rc Type A Type B Type C Type D

Case 1
10−2 17 11 11 8
10−3 29 28 17 12
10−4 44 40 26 14
10−5 59 59 36 19

Case 2
10−2 20 14 13 10
10−3 37 33 25 14
10−4 56 / 40 20
10−5 76 / 57 24

Table 2. The number of iterations needed to achieve
various convergence criteria for four iteration factors
families and B = 1 (Case 1) and B = B(τ) (Case 2).
Constant profile function is assumed.

Type A Type B Type C Type D

Case 1
Ce < 10−2 26 16 13 8

Rc < 0.1Te(∞) 26 28 19 12
Ce < 10−4 53 52 30 15

Case 2
Ce < 10−2 35 24 20 10

Rc < 0.1Te(∞) 32 27 21 15
Ce < 10−4 69 / 51 21

The best results were obtained by the use of
the most refined, C and D families of iteration fac-
tors. Their definition takes into account the two-
stream model of radiation field. This results in a
rapid convergence to the exact solution already in
the first few iterations. By the use of type C fac-
tors, 11 and 13 iterations were needed (for Case 1
and Case 2, respectively) to reach Rc of 1%, while
Ce of 1% was reached in 13 and 20 iterations. With
the use of more ”simple” D family that closes the
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Fig. 1. The maximum relative change Rc, the maximum relative convergence error Ce and the maximum
relative true error Te for four iteration factors families as a function of the iteration number for B=1.

Fig. 2. The maximum relative change Rc, the maximum relative convergence error Ce and the maximum
relative true error Te for four IF families as a function of the iteration number for B = B(τ).
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Fig. 3. The source function after the indicated number of iterations (for the convergence criterium Rc ≤
10−2) for four iteration factors families and B=1. The solutions obtained with FBILI are given by dots.

system of two-stream moments (Eq. 8), both crite-
ria: Rc ≤ 10−2 and Ce ≤ 10−2 were fulfilled in only
8 and 10 iterations, for two cases, respectively.

By analyzing Figs. 1 and 2, we can notice
the very same behavior of the maximum relative
true error Te as that described in the paper by
Kuzmanovska-Barandovska and Atanacković (2010).
After a rapid initial improvement in the first few
iterations, Te reaches an asymptotic value, or the
so-called truncation error Te(∞), which is about 2
% for A-type factors, about 1% for B and C-type
factors and less than 0.5% for D-type factors. The
truncation error is a measure of the true accuracy
since a further decrease in Rc does not improve the
accuracy already achieved. Thus, it can be used
to specify another stopping (convergence) criterion:
Rc < 0.1Te(∞), as was suggested by Auer et al
(1994). The number of iterations, for the four fam-
ilies of iteration factors and for Case 1 and Case 2,
needed to reach this criterion, as well as the criteria
Ce < 10−2 and Ce < 10−4, is shown in Table 2.

In Fig. 3 we show the variation of the source
function with optical depth in the run of iterations
for the four families of iteration factors and Case 1,
together with the solutions obtained with the FBILI
method. The convergence criterion Rc ≤ 10−2 is
used. We can see that the solution attains good ther-
malization depth already in the first iteration and the
exact values of the source functions are achieved after
just a few iterations. This is the important difference
of the IFM with respect to the simple Λ iteration

procedure. Namely, Λ iteration converges extremely
slow by to a solution that thermalizes much higher in
the atmosphere because it transfers more than neces-
sary information from one part of an iterative step to
the other. On the other hand, due to the use of iter-
ation factors that get almost exact values already in
the first iteration, the solutions are corrected simul-
taneously throughout the whole medium enabling a
fast and stable convergence. The best convergence
properties, the most exact and most rapid solutions
are obtained with the D-type iteration factors. The
true accuracy of less than 0.5% is reached in only
8 iterations. The behavior over iterations of these
factors is shown in Fig. 4.

Further tests of the IF families described
above are performed by solving linear line transfer
problem with depth-dependent profile function. For
the case of pure Doppler broadening, the depth vari-
ation of ϕx is expressed via the depth variation of the
Doppler width ∆νD(τ). Here, we used depth varia-
tion of ∆νD(τ) in the form proposed by Rybicki and
Hummer (1967). Two cases that define ”cool” and
”hot” surface layers, respectively, were considered:

∆νD(τ) = 2− e−Aτ , (17a)

∆νD(τ) = 1 + e−Aτ . (17b)

Again, we assumed the line formation in a semi-
infinite medium with ε = 10−4 and β = 10−3.
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Fig. 4. Variation of the D- type factors over the iterations for B=1.

Fig. 5. The source functions in variable property media: (a) ”Cool” surface layer, (b) ”Hot” surface layer.
Curves labeled by n = 1, 2, 3 correspond to different values of coefficient A = 10−n. The solutions for δ = 1
are given by dashed lines.

The tests proved that the convergence prop-
erties of four IFs families for the case of depth-
dependent profile function are similar to the ones
for constant profile function (δ = 1). Again, the
best results were obtained with D-type factors. In
Table 3 we show the number of iterations neces-
sary to achieve different maximum relative correc-
tions for ”cool” and ”hot” surface layers. Three dif-
ferent values of the coefficient A = 10−1, 10−2 and
10−3 were considered. The usual convergence crite-
rion Rc ≤ 10−2 was fulfilled in 15, 18 and 18 iter-
ations for ”cool” surface layer, and for three values
of A, respectively, and in 7, 5 and 4 iterations for

the respective values of A but for the ”hot” surface
layer. With regard to 8 iterations needed to achieve
the same criterion for the case of constant profile
function, the results are as expected. For the ”cool”
surface layer the profile ϕx is much narrower and the
increase of ∆νD grows deeper in the medium requir-
ing more iterations with respect to the δ = 1 case.
On the other hand, for the ”hot” surface layer the
absorption profile is wider and the convergence is
achieved in smaller number of iterations. The source
functions for two cases defined in Eq. (17) and three
values of the coefficient A (with the convergence cri-
terion Rc ≤ 10−2) are presented in Fig. 5.
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Table 3. The number of iterations needed to achieve
the convergence for the D-type iteration factors and
”cool” and ”hot” surface layer.

”Cool” surface layer
Rc A = 10−1 A = 10−2 A = 10−3

10−2 15 18 18
10−3 24 29 27
10−4 33 39 38
10−5 41 47 55

”Hot” surface layer
Rc A = 10−1 A = 10−2 A = 10−3

10−2 7 5 4
10−3 11 7 5
10−4 15 9 7
10−5 19 12 10

4. CONCLUSION

In this paper several families of iteration fac-
tors are used to solve the two-level atom line forma-
tion problem when the spectral line is superposed
to the background continuum. A simple test case
of a spectral line formed by Doppler broadening
in a semi-infinite atmosphere with ε = 10−4 and
β = 10−3 is solved. The cases of constant and depth-
dependent profile function are considered. The itera-
tion factors, computed at the beginning of each itera-
tion from the formal solution of the RT equation, are
used to close two systems of RT moment equations.
One system is derived by performing the integration
over all angles, whereas the other system is obtained
by using the two-stream model of the radiation field;
the both are integrated over all line frequencies.

By analyzing the convergence properties of
four families of iteration factors (A, B, C, D) we
can conclude that their use in the case of depth-
independent profile function leads to a rapid and sta-
ble convergence to the solutions that differ by only
0.4-2% from the solutions obtained by the reference
FBILI method. Only 10-30 iterations are needed to
fulfill various convergence (stopping) criteria. This
is less than in the pure line transfer case described
in Paper I since, by adding the continuum opacity,
the thermalization length decreases, thus making the
conditions of line formation closer to LTE. The pro-
cedure also converged very fast for all IFs families
when the case of depth-dependent profile function

was considered. The best convergence properties are
obtained using D-type factors confirming again the
fact that the IFs, more related to the physics of the
problem, lead to faster and more stable convergence.
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ITERACIONI FAKTORI U PROBLEMU FORMIRAǋA LINIJA
SA FREKVENCIONO ZAVISNOM FUNKCIJOM IZVORA

O. Kuzmanovska-Barandovska

Department of Physics, Faculty of Natural Sciences and Mathematics,
P.O. Box 162, Skopje, Macedonia

E–mail: olgicak@pmf.ukim.mk

UDK 52–645
Originalni nauqni rad

U ovom radu je upotreba nekoliko
prethodno definisanih familija iteracionih
faktora uopxtena na sluqaj formiraǌa li-
nija kada se uzme u obzir kontinuum na koji
nale�u ili su superponirane linije. Disku-

tovana su konvergentna svojstva iterativne
procedure primeǌene na rexeǌe problema
formiraǌa linija za model atoma sa dva
nivoa u sredinama konstantnih i promenǉivih
svojstava.
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