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SUMMARY: In this work we present a simple approximate method for analysis
of the basic dynamical and thermodynamical characteristics of Kerr-Newman black
hole. Instead of the complete dynamics of the black hole self-interaction, we consider
only the stable (stationary) dynamical situations determined by condition that the
black hole (outer) horizon ”circumference” holds the integer number of the reduced
Compton wave lengths corresponding to mass spectrum of a small quantum system
(representing the quantum of the black hole self-interaction). Then, we show that
Kerr-Newman black hole entropy represents simply the ratio of the sum of static
part and rotation part of the mass of black hole on one hand, and the ground mass of
small quantum system on the other hand. Also we show that Kerr-Newman black
hole temperature represents the negative value of the classical potential energy
of gravitational interaction between a part of black hole with reduced mass and
a small quantum system in the ground mass quantum state. Finally, we suggest
a bosonic great canonical distribution of the statistical ensemble of given small
quantum systems in the thermodynamical equilibrium with (macroscopic) black hole
as thermal reservoir. We suggest that, practically, only the ground mass quantum
state is significantly degenerate while all the other, excited mass quantum states,
are non-degenerate. Kerr-Newman black hole entropy is practically equivalent to
the ground mass quantum state degeneration. Given statistical distribution admits
a rough (qualitative) but simple modeling of Hawking radiation of the black hole
too.
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1. INTRODUCTION

In this work, generalizing our previous re-
sults on Schwarzschild and Kerr-Newman black holes
(Pankovic et al. 2008abc), we present a sim-
ple, approximate method for analysis of the ba-

sic dynamical and thermodynamical characteristics
(Bekenstein-Hawking entropy and Hawking temper-
ature) of Kerr-Newman black hole. Instead of the
complete dynamics of Kerr-Newman black hole self-
interaction, we shall consider only the stable (sta-
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tionary) dynamical situations determined by the con-
dition that the Kerr-Newman black hole (outer)
horizon ”circumference” (approximately we shall
formally consider that outer horizon represents a
sphere) holds the integer number of the reduced
Compton wave lengths corresponding to mass spec-
trum of the small quantum system (representing the
quantum Kerr-Newman black hole self-interaction).1
Then, we show that the Kerr-Newman black hole
entropy represents the ratio of the sum of static
(Schwarzschild) part and rotation part of the mass
of Kerr-Newman black hole on one hand, and the
ground mass of small quantum system on the other
hand. Also we show that black hole temperature
represents the negative value of the classical po-
tential energy of gravitational interaction between
a part of black hole with reduced mass and small
quantum system in the ground mass quantum state.
Finally, we suggest a bosonic great canonical dis-
tribution of the statistical ensemble of given small
quantum systems in the thermodynamical equilib-
rium with (macroscopic) Kerr-Newman black hole
as thermal reservoir. We suggest that, practically,
only the ground mass quantum state is significantly
degenerate while all the other, excited mass quan-
tum states are non-degenerate. Kerr-Newman black
hole entropy is practically equivalent to the ground
mass quantum state degeneration. Given statistical
distribution admits a rough (qualitative) but sim-
ple modeling of Hawking radiation of the black hole
too. In many aspects, this modeling is very close to
Parikh and Wilczek modeling of Hawking radiation
as tunneling (Parikh and Wilczek 1999).

2. THEORY

As it is well-known (Wald 1984), the outer
”horizon” radius (of course, Kerr-Newman outer
horizon does not represent exactly a sphere, but here,
as well as further in this work, we shall suppose ap-
proximately that it is a sphere with corresponding
radius R) of Kerr-Newman black hole is given by

R = M + (M2 − a2 −Q2)
1
2 (1)

where M is the black hole mass, a = J
M where J

represents the black hole angular momentum, while
Q is the black hole electric charge. It implies

M =
R

2
+

1
2

a2

R
+

1
2

Q2

R
= Ms + Mr + Mc. (2)

The first part of M , Ms = R
2 , can be consid-

ered as an effective black hole mass corresponding
to a fictitious Schwarzschild black hole with horizon
radius R. In fact, Ms can be regarded as the mass

corresponding to the static part of the gravitational
field of Kerr-Newman black hole.

The second part of M , Mr = 1
2

a2

R , represents
classically the mass, i.e. rotation kinetic energy cor-
responding to angular momentum J = aM and ra-
dius R.

We can introduce the following quantities:

Mg = Ms + Mr =
R

2
+

1
2

a2

R
=

R2 + a2

2R
(3)

and
Rg = 2Mg. (4)

Here Mg can be regarded as an effective mass cor-
responding to total gravitational mass represent-
ing sum of the static and rotation mass, while Rg

can be considered as horizon radius of a fictitious
Schwarzschild black hole with mass Mg.

The third part of M , Mc = 1
2

Q2

R , can be con-
sidered as an effective mass, i.e. the potential en-
ergy of electrostatic repulsion of the homogeneously
charged thin shell with electrical charge Q and radius
R.

Finally, we can define

Mred = (M2 − a2 −Q2)
1
2 = M(1− a2 + Q2

M2
)

1
2 (5)

which can be considered as an effective, reduced
black hole mass obtained by diminishing the real
black hole mass M by means of, classically speak-
ing, rotation (”centrifugal force”) and electrostatic
repulsion.

Suppose now that, for ”macroscopic” (with
mass many times larger than Planck mass, i.e. 1)
Kerr-Newman black hole, at horizon surface there is
some small (with ”microscopic” masses, i.e. masses
smaller than Planck mass, i.e. 1) quantum system.
It can be supposed that given small quantum system
at black hole horizon represents the quant of the self-
interaction of black hole, or, quant of the interaction
between formally separated black hole and its fields.

Further, for a ”macroscopic” Kerr-Newman
black hole, only stable (stationary) dynamical sit-
uations will be considered rather than the complete
dynamics of its self-interaction. The stability will be
determined by the following condition

mnR = n
1
2π

, for mn ¿ M and n = 1, 2, ... (6)

where mn for mn ¿ M and n = 1, 2, ... represent
the mass (energy) spectrum of a given small quan-
tum system. It corresponds to

2πR = n
1

mn
= nλrn for mn ¿ M and n = 1, 2, ..

(7)

1Obviously it is conceptually analogous to Bohr quantization postulate interpreted by de Broglie relation in Old, Bohr-
Sommerfeld, quantum theory. Also, it can be pointed out that our formalism is not theoretically dubious, since, as it is
not hard to see, it can represent an extreme simplification of a more accurate, e.g. Copeland-Lahiri (1995), string formalism
for the black hole description.
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where 2πR formally stands for the ”circumference”
of Kerr-Newman black hole outer horizon, while

λrn =
1

mn
(8)

represents the n-th reduced Compton wavelength of
the mentioned small quantum system with mass mn

for n = 1, 2, .... Expression (7) simply means that
circumference of the Kerr-Newman black hole outer
horizon contains exactly n corresponding n-th re-
duced Compton wave lengths of given small quantum
system with mass mn captured at black hole horizon
surface, for n = 1, 2, .... Obviously, it is essentially
analogous to well-known Bohr’s angular momentum
quantization postulate interpreted via de Broglie re-
lation. Moreover, in more accurate quantum me-
chanical analysis Bohr-de Broglie standing waves
turn out in Schrödinger stationary quantum states,
while our reduced Compton waves turn out in quan-
tized small oscillations of Copeland-Lahiri circular
(string) loop (Copeland and Lahiri 1995.) However,
there is a principal difference with respect to Bohr’s
atomic model. Namely, in Bohr’s atomic model dif-
ferent quantum numbers n = 1, 2, ..., correspond to
different circular orbits (with circumferences propor-
tional to n2 = 12, 22, ...). Here any quantum number
n = 1, 2, ... corresponds to the same circular orbit
(with circumference 2πR).

According to (6) and (1) there follows

mn = n
1

2πR
= (9)

= n
1

2π(M + (M2 − a2 −Q2)
1
2 )
≡ nm1

for mn ¿ M and n = 1, 2, ... ,

where

m1 =
1

2πR
=

1
2π(M + (M2 − a2 −Q2)

1
2 )

(10)

represents the ground mass of small quantum system.
Obviously, m1 depends on M so that m1 decreases
when M increases and vice versa. For a ”macro-
scopic” black hole, i.e. for M À 1 it follows that
m1 ¿ 1 ¿ M .

It is not difficult to see that, according to
(3), the ratio of Mg, m1 represents the well-known
Bekenstein-Hawking entropy of Kerr-Newman black
hole, i.e.

S =
Mg

m1
= π(R2 + a2) =

A

4
, (11)

where, according to Bekenstein assumption, A = 4S
represents the black hole surface area. Obviously,
this represents an interesting dynamical interpreta-
tion of Kerr-Newman black hole entropy whose sta-
tistical meaning will be discussed later.

Further, according to (3)-(5), (10), let us de-
fine

V = −Mredm1

Rg
= − (M2 − a2 −Q2)

1
2

2π(R2 + a2)
(12)

that can be considered as the classical potential
of the gravitational interaction between an effective
black hole part with mass Mred and a small quantum
system in the ground mass state m1 at a distance Rg.

It can be observed that

T = −V =
Mredm1

Rg
=

(M2 − a2 −Q2)
1
2

2π(R2 + a2)
(13)

represents the well-known Hawking temperature of
Kerr-Newman black hole. This represents an in-
teresting dynamical interpretation of Kerr-Newman
black hole temperature.

Thus the Kerr-Newman black hole entropy
(11) and temperature (13) are interpreted phe-
nomenologically dynamically in a simple, quasi-
classical way. Also, it can be seen that for a
Schwarzschild black hole, representing a special case
of the Kerr-Newman black hole for a = 0 and Q = 0,
we get R = 2M , Ms = Mg = Mred = M . It im-
plies S = M

m1
and T = −V = −Mm1

R representing
intuitively a very clear and simple, ”obvious”, quasi-
classical interpretation of Schwarzschild black hole
entropy (as quotient of the black hole mass and the
small quantum system ground mass) and temper-
ature (as negative classical potential energy of the
gravitational interaction between the black hole and
the small quantum system in mass ground state).
Vice versa, clearness and simplicity, i.e. ”obvious-
ness”, of Kerr-Newman black hole entropy (11) and
temperature (13) follow from fact that they rep-
resent simplest generalizations of previously inter-
preted Schwarzschild black hole entropy and temper-
ature.

3. THE STATISTICAL MEANING
OF KERR-NEWMAN
BLACK HOLE ENTROPY

In the following, we give a deeper, statistical
interpretation of Kerr-Newman black hole entropy.

Suppose that the small quantum system inter-
acting with the (macroscopic) Kerr-Newman black
hole as a thermal reservoir forms a bosonic great
canonical ensemble in thermodynamical equilibrium,
with mass spectrum mn for (9), temperature T given
by Eq. (13) and chemical potential µ the value of
which will be determined later.

Then, according to (9), statistically averaged
number, Nn of the small quantum systems with mass
mn, for n = 1, 2, ... is given by

Nn = gn
1

exp[mn−µ
T ]− 1

= (14)

= gn
1

exp[nm1−µ
T ]− 1

,

for n = 1, 2, ... ,
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where gn represents the degeneracy of the quantum
state corresponding to mn, for n=1, 2,....

In addition, as it is well-known too, partial en-
tropy in the quantum state corresponding to mn for
n = 1, 2, ... is given by

Sn = gn ln[1+
Nn

gn
]+Nn ln[1+

gn

Nn
], for n = 1, 2, ... ,

(15)
where gn represents the degeneracy of the quantum
state corresponding to mn for n = 1, 2, ....

We shall assume here

gn ' 1, for n À 1 (16)

which, according to (14), (15) implies

Nn ¿ 1, for n À 1 (17)

and
Sn ' Nn ¿ 1 for n À 1. (18)

Also, we shall take here

g1 = N1. (19)

Thus, according to (10)-(13), implies the following
value of the chemical potential

µ = m1 − T ln 2 = m1(1− T

m1
ln 2) = (20)

= m1(1−
1− M

R

1 + a2

M2

ln 2)

Intuitive explanation of the assumptions (16)
and (19) is very simple. The ground mass state
corresponding to m1, (energetically) closest to the
(outer) horizon, maximally exposed to gravitational
influence, is maximally degenerate. The highly ex-
cited quantum states corresponding to mn for n À 1,
(energetically) very distant from horizon, are not so
strongly exposed to gravitational influence and are
almost non-degenerate.

It can be observed that here we have a situ-
ation to some extent similar to Bose condensation.
Small quantum systems maximally occupy the de-
generate ground mass state, in comparison to other,
practically non-degenerate mass states even if, ac-
cording to (19), N1

g1
does not tend to infinity, but to

1.
According to (15)-(19) it follows

S1 = 2 ln 2N1 ' 1.39N1 ∼ N1 for n = 1. (21)

It implies the following expression for usual statisti-
cally defined total entropy S

S =
∑
n=1

Sn ' S1 ' 1.39N1 ∼ N1 , (22)

and equivalence of (22) and (11) implies

N1 ' 1
1.39

Mg

m1
' 0.72

Mg

m1
∼ Mg

m1
. (23)

Then, statistically averaged total number of the
small quantum systems N is given by

N =
∑
n=1

Nn ' N1 ' 1
1.39

Mg

m1
' 0.72

Mg

m1
∼ Mg

m1
,

(24)
and statistically averaged black hole gravitational
mass of the ensemble < Mg > is given by expres-
sion

< Mg > =
∑
n=1

Nnmn ' N1m1 ' (25)

' 1
1.39

Mg ' 0.72Mg ∼ Mg ,

which approximately corresponds to the black hole
gravitational mass Mg.

In this way, we statistically founded as a satis-
factory approximation all previously discussed basic
thermodynamical characteristics of Kerr-Newman
black hole. In other words, the suggested statistics
yields results which are in a satisfactory agreement
with previous thermodynamical predictions.

However, it can be noticed that the assump-
tion (16) cannot be determined by condition (19) or
some other statistical or thermodynamical expres-
sion. Therefore, this reason we shall simply suppose
the following form of mass (energy) degeneracy in
the general case

gn = (N1 − 1) exp[−mn −m1

T
] + 1 for n = 1, 2, ...

(26)
which, for n = 1, is equivalent to (19) and to (16)
for n À 1.

4. ROUGH, QUALITATIVE
DESCRIPTION OF THE
BLACK HOLE RADIATION

As it was shown previously practically all the
small quantum systems in the statistical ensemble
occupy ground mass quantum state. Therefore, tran-
sitions (jumps) from higher to lower, quantum states,
especially the ground one, cannot be the primary
cause of black hole Hawking radiation in our sim-
ple model. Hence, in our model it must be taken
that there are some additional, subtle dynamical pro-
cesses, corresponding to the Hawking near horizon
particle-antiparticle creation, which cause black hole
radiation and mass decrease. On the other hand,
these subtle dynamical processes must be presented
in our simple, approximate model only roughly, phe-
nomenologically. It can be effectuated in a way
very close to Parikh and Wilczek (1999) modeling of
Hawking radiation as tunneling, or, in further con-
ceptual analogy, as a nuclear alpha decay.
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Suppose that an arbitrary of S small quantum
systems in ground mass quantum state interacts dy-
namically with the other S − 1 small quantum sys-
tems in ground mass quantum state similarly as one
alpha particle with other alpha particles in the alpha
radioactive atomic nucleus. Then, in a way similar to
the modeling of alpha decay as quantum tunneling,
given interaction can be presented as the propagation
of one small quantum system in the potential barrier
(determined by the black hole and other small quan-
tum systems) including possibility of the tunneling,
i.e. small quantum system decay.

Suppose that given individual decay occurs
statistically during some time interval ∆t1 and that
energy of decayed small quantum system transforms
into the black hole radiation. Then, according to
Heisenberg energy-time uncertainty relation it fol-
lows

∆t1 ' 1
∆m1

, (27)

where ∆m1 represents uncertainty of the mass in
the ground mass quantum state corresponding to the
small quantum system mass m1.

Suppose that the ground mass level is sharply
defined, i.e. that

∆m1 ¿ m1 (28)

or, for example,

∆m1 =
1

100
m1. (29)

Now, the total time interval for black hole
complete evaporation can be roughly represented by
the expression

∆ttot ' S∆t1. (30)

In the simplest case, i.e. for the Schwarzschild
black hole as a special limit of the Kerr-Newman
black hole, as it is not difficult to see according to
(30) or, according to (10), (11), (27), (29),

∆ttot ' 1600π2M3 = 5027πM3. (31)

It is very close to Hawking time interval for total
evaporation of the black hole

∆ttot = 5120πM3. (32)

In this way we demonstrated that our model,
very close to Parikh and Wilczek modeling of Hawk-
ing radiation as tunneling, is capable of describing
roughly (qualitatively) and phenomenologically, but
non-trivially, both the black hole radiation and with
evaporation.

5. DISCUSSION AND CONCLUSION

In the previous sections we suggested a sim-
ple, approximate but non-trivial method for de-
scription of the basic dynamical and thermodynam-
ical characteristics of Kerr-Newman black hole. We
started from the well-known exact expressions for
Kerr-Newmann black hole outer horizon. Further-
more, instead of the complete dynamics of black hole
self-interaction we considered only some special, sta-
ble (stationary) dynamical situations. We assumed
(postulated) that the situations mentioned are deter-
mined by the rule that the ”circumference” of Kerr-
Newman black hole outer horizon (formally approx-
imately treated as a sphere) contains integer num-
bers of reduced Compton wave lengths correspond-
ing to the mass spectrum of a small quantum sys-
tem (quantum of black hole self-interaction). It is, of
course, formally analogues to Bohr angular momen-
tum quantization postulate interpreted by de Broglie
relation in the Old, Bohr-Sommerfeld quantum the-
ory. But, as it is not difficult to see, there is no
closer connection between real physical content of
Bohr and our postulate. Further we proved that
ground mass of a small quantum system, introduced
in corresponding, practically quasi-classical dynami-
cal expressions, determines simply and effectively the
exact black hole entropy and temperature. The black
hole entropy can be considered as the quotient of
the sum of the black hole static and rotation mass
on one hand and the ground mass of small quantum
system on the other. The black hole temperature
can be regarded as the negative value of the classical
potential energy of gravitational interaction between
part of the black hole with reduced mass and the
small quantum system in the ground mass quantum
state. Using the statistical methods, i.e. a bosonic
great canonical ensemble, we interpreted satisfacto-
rily the black hole entropy as the degeneration of the
small quantum system ground mass quantum state.
Finally, we demonstrated that the given statistical
distribution admits a rough (qualitative) but simple
modeling of Hawking radiation. In many aspects it is
very close to Parikh and Wilczek modeling of Hawk-
ing radiation as tunneling.
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Originalni nauqni rad

U ovom radu prezentujemo jedan jednos-
tavan, aproksimativni metod za analizu os-
novnih dinamiqkih i termodinamiqkih svoj-
stava Ker-ǋumenove crne rupe. Umesto kom-
pletne dinamike samointerakcije crne rupe
razmatramo samo stabilne (stacionarne) di-
namiqke situacije odre�ene uslovom da obim
”kru�nice” (spoǉaxǌeg) horizonta crne rupe
sadr�i ceo broj redukovanih Komptonovih
talasnih du�ina korespondentnih spektru
mase malog kvantnog sistema (koji predstavǉa
kvant samointerakcije crne rupe). Pokazujemo
da tada entropija Ker-ǋumenove crne rupe
predstavǉa jednostavno koliqnik sume sta-
cionarnog i rotacionog dela mase crne rupe,
s jedne strane, i osnovne mase malog kvantnog
sistema, s druge strane. Tako�e, pokazu-
jemo da temperatura Ker-ǋumenove crne rupe

predstavǉa negativnu vrednost klasiqne po-
tencijalne energije gravitacione interakcije
izme�u dela crne jame sa redukovanom masom
i malog kvantnog sistema u osnovnom kvant-
nom staǌu mase. Konaqno, predla�emo bozon-
sku veliku kanoniqku raspodelu statistiqkog
ansambla malog kvantnog sistema u termodi-
namiqkoj ravnote�i sa (makroskopskom) crnom
rupom kao toplotnim rezervoarom. Mi su-
gerixemo da je, praktiqno, samo osnovno
kvantno staǌe mase znaqajno degenerisano, dok
su sva ostala, pobu�ena kvantna staǌa mase,
nedegenerisana. Entropija Ker-ǋumenove
crne rupe je praktiqno ekvivalentna degene-
raciji osnovnog kvantnog staǌa mase. Data
statistiqka distribucija dozvoǉava, tako�e,
i jedno grubo (kvalitativno) modeliraǌe
Hokingovog zraqeǌa.
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