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SUMMARY: A particular case of steady state and spherical symmetry - the so-
called logarithmic potential introduced as the first approximation for dark coronae
of galaxies - is studied. Both time and angle dependence of the distance to the centre
for the orbit of a bound test particle with arbitrary initial conditions are calculated
numerically. The main attention is paid to the ratio of the sidereal period to the
anomalistic one. It is found that this ratio is only slightly variable for a given
mean distance to the centre and to increase with increasing orbital eccentricity.
This quantitative result may be explained by the fact that the cumulative mass
dependence on the distance corresponding to the logarithmic potential obeys a
power law, the case where the ratio of the second derivative of the potential to the
square of angular velocity for the same distance is constant. On the other hand,
compared to the period of circular motion both periods increase with increasing
eccentricity.
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1. INTRODUCTION

The question concerning the integrals of mo-
tion in the case of large or statistical stellar sys-
tems, like star clusters and galaxies, is among the
fundamental ones in stellar dynamics. For such sys-
tems, it is usual to assume the steady state. As it
is well known, this assumption means that the en-
ergy integral should exist and, also, the steady state
is expected to be associated with a kind of sym-
metry. Symmetries allowing some sort of angular-
momentum integral are of a special interest (for more
details: e.g. Binney and Tremaine 1987, Contopou-
los 2002), since for many galaxies and star clusters, as
a first approximation, steady state with axial symme-
try has been used. Nearly planar orbits, typical for
stars of galaxy discs, appear as a point where the ap-
proximations of spherical and axial symmetries (both

involving the steady state) come close together. Due
to low orbital eccentricities such orbits are usually
referred to as epicyclic ones. What is especially char-
acteristic for them is that the ratio of the periods, i.e.
the frequencies, is given simply through a dimension-
less quantity which describes the local properties of
the gravitation field (e.g. Ninković 1996). In princi-
ple, one has three basic frequencies (periods). One of
them - the so-called circular frequency - depends on
the assumed potential and it is referred to a certain
distance from the centre. The other two - sidereal
and epicycle ones - characterize the given orbit, i.e.
they are integrals of motion; the epicycle frequency
coincides with the anomalistic one, and for this rea-
son it is, perhaps, better to prefer the latter name.
The term epicycle is closely connected with the mo-
tion along orbits of low eccentricity, therefore it is
not suitable to use it when a generalization towards
arbitrary eccentricities is intended.
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The ratio of the two periods (anomalistic to
sidereal) is very important since it determines the
character of a planar orbit, more clearly whether
an orbit will be periodic or not (Contopoulos 2002).
However, this ratio can be studied in terms of the
period of circular motion because this period can be
related to the sidereal one by means of a transcenden-
tal equation (Ninković 1996). Therefore, the present
authors want to examine numerically the ratio of the
two periods (anomalistic to sidereal), as well as to ex-
press both of them in terms of the period of circular
motion for the same mean distance (see below), in
the case of a given potential without any limitation
concerning the orbital eccentricity.

2. FORMALISM

As it is well known, an analytic solution for an
orbit in the case of steady state and spherical sym-
metry can be obtained for two particular cases only:
homogeneous sphere and point mass (alternatively
referred to as, say, spherical harmonic oscillator and
Kepler potential, respectively, Binney and Tremaine
1987 - p. 107). In addition, in these two cases the
ratio sidereal-to-anomalistic period is constant - it
depends neither on the mean distance nor on the ec-
centricity - and has an integral value. Due to the
latter property, as also well known, for these two
potentials the orbits are closed. Of course, this is
valid provided that the test particle is bound. Mo-
tion of an unbound test particle is not considered in
the present paper.

The motion of a bound test particle in the case
under study (steady state + spherical symmetry) in
the orbital plane can be characterized by a combi-
nation of two independent integrals of motion. For
instance, we can use the apocentric and pericentric
distances - ra and rp, respectively. Another option
is to use the mean distance rm and orbital eccentric-
ity e, which is a dimensionless quantity. These two
quantities have already been mentioned, but since
they can be defined in various ways, their definitions
used herewith will be given.

rm =
ra + rp

2
,

e =
ra − rp

ra + rp
. (1)

The eccentricity, as defined here, is to be understood
as a measure of deviation from a circular orbit, not
geometrically as in the case of an ellipse since or-
bits are generally not closed. All such combinations
of independent integrals of motion are due to the
two fundamental integrals (conservation laws) - en-
ergy and angular momentum modulus. The same is
true for the two periods - anomalistic Pa and side-
real Ps. For any particular potential corresponding

to the conditions of steady state and spherical sym-
metry, the period of circular motion depends on the
radius only. If the orbital eccentricity is low, the pe-
riod of circular motion and the anomalistic one are
related very simply, (e.g. Ninković 1996)

Pc = (3− γ)1/2Pa , (2)

where γ is a dimensionless quantity, more precisely
the ratio of the second derivative of the potential to
the square of the cyclic frequency of circular motion
(it corresponds to period Pc). In the case where the
cumulative mass follows a power law, the ratio γ is
constant, i.e. it does not depend on the distance.
This means that in such cases for low eccentricities
the relation between the two periods is universal, i.e.
distance independent. Since the sidereal and circular
frequencies (periods) are almost equal to each other
for the case of a low orbital eccentricity (Ninković
1996), Eq. (2) yields a kind of lower limit for the ra-
tio of the anomalistic period to the sidereal one for a
given potential. Higher orbital eccentricities require
this ratio to be treated differently.

In order to shed more light on the ratio of the
two periods (sidereal to anomalistic), for the case of
higher orbital eccentricities, the present authors car-
ried out some calculations assuming a particular type
of stationary and spherically symmetric potential. It
is a potential yielding a power law for the cumula-
tive mass, so that the quantity γ, given above, will
be constant. This will be the so-called logarithmic
potential given by:

Π(r) = uc
2(1 + ln

rl

r
) . (3)

With this potential, the circular velocity (uc) is con-
stant. For the density it yields a simple power law -
it decreases as r2 being infinite at the centre. Conse-
quently, the cumulative mass is a linear function of r.
Therefore, such a mass distribution cannot be valid
over an infinite distance from the centre; in other
words the limiting radius rl must be finite since oth-
erwise the total mass would be infinite. Therefore,
the potential, as seen from Eq. (3), contains two
parameters: the circular velocity and the limiting
radius. Like the density, it also becomes infinite at
the centre. This means that any rectilinear bound
orbit (angular momentum equal to zero) should be
excluded. Beyond the boundary r = rl the density is
equal to zero, i.e. the potential is that of point mass.
Therefore, our calculations have another constraint:
a test particle is not only bound, but also its apoc-
entric distance must not exceed the limiting radius -
ra ≤ rl.

The mass distribution characterized by poten-
tial given by Eq. (3), i.e. density inversely pro-
portional to r2, is often referred to as isothermal.
However, the isothermal solution is not the only
one; it is obtained only if the velocity distribution is
isotropic. The mass distribution assumed here can be
also valid if the velocity distribution is not isotropic
(e.g. Antonov et al. 1975).
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3. ORBIT CALCULATIONS

The constraints, already mentioned above, are

J > 0 , ra ≤ rl , (4)

where J is the specific (per unit mass) angular mo-
mentum of the test particle. Since both the specific
angular momentum and specific energy E can be re-
lated to the mean distance rm and eccentricity e, a
set of orbits with a fixed rm and various e can be
examined. The relations between E and J , rm and
e are (Ninkovich 1986 in Russian)

E =
1
2
f1(e)uc

2 − uc
2(1 + ln

rl

rm
) ,

J2 = 2r2
m(1± e)2uc

2[
1
2
f1(e)− ln (1± e)] ,

f1(e) =
(1 + e)2 ln (1 + e)− (1− e)2 ln (1− e)

2e
.

Using these relations we can study the ratio of
the two periods for a given rm and various eccentric-
ities, varying the mean distance rm afterwards. We
solve numerically the differential equations of motion
(Lagrange equation and the angular momentum one)

r̈ − J2

r3
=

dΠ
dr

,

ψ̇ =
J

r2
,

where Eq. (3) is applied for the potential; ψ is the po-
sition angle in the orbital plane. By solving the first
equation one obtains the dependence of the distance
on time, and combining it subsequently with the sec-
ond equation one obtains the dependence r(ψ), i.e.
the orbit. This dependence does not mean that for
every ψ one has only one value for r since, generally,
the orbit is not closed. In our calculations the ini-
tial conditions always correspond to the apocentric
position which means that the initial value of r is
equal to rm(1+ e) (formula (1)). Then the radial ve-
locity component ṙ, as well known, is equal to zero,
whereas the transverse one (vt), is easily obtained
as J/r. In our calculations we use rl and uc as the
units for the distance and velocity, respectively. Con-
sequently, the unit of specific energy will be u2

c , i.e.
rluc in the case of specific angular momentum. For
each pair rm, e we evaluate the angle difference ∆ψ.
This is the difference between the position angle of
the pericentre and that of the next apocentre. It is
constant and it corresponds to half the anomalistic
period. Having in mind that half the sidereal period
corresponds to the angle difference exactly equal to
π, the ratio π/∆ψ will be equal to the ratio of the two
periods looked for in the present paper. Finally, the
period of the circular motion corresponding to the
same distance rm is easily obtained as 2πrm/uc. As
mentioned previously, in the limiting case of low ec-
centricities the sidereal period is approximately equal

to that of the circular motion, whereas the anomalis-
tic one is related to the period of circular motion by
means of Eq. (2); it is to be added that for the case of
potential (3) the ratio γ is constant, since the cumu-
lative mass follows a power law,the exponent equals
to unity exactly. Thus, in the particular case studied
here, for low eccentricities the ratio of the period of
circular motion, i.e. sidereal, to the anomalistic one
is equal to 21/2, an irrational number. Therefore, for
low eccentricities the angle difference ∆ψ is about
π/
√

2.

4. RESULTS AND DISCUSSION

Our main results are given in the Table 1. As
it is clearly seen, the increase in the orbital eccen-
tricity brings about a slight decrease in the angle
difference ∆ψ, which means that for higher eccen-
tricities the ratio sidereal-to-anomalistic periods is
only slightly different from

√
2, the value character-

istic for low eccentricities. In addition, the variation
of the mean distance has no influence here.

Table 1. Eccentricity (e), semi-anomalistic
period ( 1

2Pa) and angle difference (∆ψ) for
a given values of the mean distance (rm)

rm = 0.3
e 0.10 0.30 0.50 0.70 0.90

1
2Pa 0.67 0.68 0.69 - 0.73
∆ψ 2.23 2.26 2.26 - 2.17

rm = 0.5
e 0.10 0.30 0.50 0.70 0.90

1
2Pa 1.12 1.12 1.14 1.17 1.22
∆ψ 2.24 2.21 2.20 2.18 2.34

rm = 0.7
e 0.10 0.30 0.50 0.70 0.90

1
2Pa 1.56 1,57 - - -
∆ψ 2.23 2.21 - - -

It should be pointed out that, in a realistic
case of spherical symmetry, this angle difference is
limited to values within [π

2 , π] (Contopoulos 2002, p.
379). It may be added here that the lower limit corre-
sponds to the homogeneous sphere and the upper one
to the point mass. This can be easily seen from Eq.
(2), though it holds for low eccentricities, because in
the case of these two models the ratio γ is an integer,
to be equal to -1 and 2, respectively. This means that
for any realistic case of spherical symmetry, γ varies
as a monotonous function of r between the limits of
-1 and +2 from the centre towards the periphery.
Only if the cumulative mass follows a power law, γ
is constant. In the case of a cuspy mass distribution
(e.g. Dehnen 1993, Tremaine et al. 1994) the cen-
tral value of γ is greater than -1 depending on the
density slope near the centre of the system. Also, if
a black hole dominates the potential in the central

47
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part (e.g. Tremaine et al. 1994), the central value of
γ is 2, but this quantity in such a case is no longer a
monotonous function of the distance to the centre r.

Now it is more clear why the interval of the pe-
riod ratio in the present case is rather limited, com-
pared to a potential in which γ is not constant. In
this latter case, the ratio of the periods covers prac-
tically the entire interval (1, 2).

The anomalistic period for the same mean dis-
tance, as compared to the period of circular motion
for this distance, shows an increasing trend; its ratio
to the period of circular motion amounts to about
(
√

2)−1 at low eccentricities (Eq. (2)) and attains
a value of about 1.29−1 at very high eccentricities
(about 0.9). With regard to the above comment
concerning the ratio of the anomalistic period to the
sidereal one for the same mean distance and eccen-
tricity, this means that the sidereal period also in-
creases with increasing orbital eccentricity: being ex-
actly equal to the period of circular motion at the
zero eccentricity its ratio to the period of circular
motion attains about 1.1 at high eccentricities. This
behaviour does not depend on the mean distance.

The potential used here (formula (3)) has been
considered most frequently in connection with the
galactic subsystems constituted of dark matter, re-
ferred to usually as dark halos or (dark) coronae. In
the paper the subject of which was the distribution in
the phase space within such a system provided that it
is self-consistent, Antonov et al. (1975) also assumed
the mass distribution characterized by potential (3).
This is the most simple version of a mass distribu-
tion law describing the coronae of galaxies since a
dark corona has been assumed most frequently to be
spherically symmetric (e.g. Samurović et al. 1999).

5. CONCLUSIONS

The period ratio for a special case of sta-
tionary and spherically symmetric potential (the so-
called logarithmic potential) was examined. This po-
tential was characterized by the constant value of
the ratio of second potential derivative to square of
angular velocity of circular motion and also by the
constant circular velocity. The latter property leads
to a linear dependence of a period on the radius for
circular motion. The anomalistic period for a given
mean distance increases with eccentricity, but its be-

haviour is independent of the mean distance. On
the other hand, the sidereal period being practically
equal to that of circular motion for low eccentrici-
ties shows an increasing trend with eccentricity so
that its ratio to the corresponding anomalistic pe-
riod slightly increases, i.e. it remains close to

√
2,

the value found theoretically for low eccentricities.
This result may be ascribed to the power law valid
for the cumulative mass, i.e. to constant quantity γ
(Eq. (2)). The behaviour of the period ratio also
does not show any dependence on the mean distance
of the orbit. Therefore, in the case of the logarith-
mic potential it is almost impossible to find an orbit
for which the ratio sidereal-to-anomalistic period is
a numerically stable rational number. Clearly, the
case of a rational ratio of the periods is of a special
interest because then the fifth independent integral
of motion is isolating (e.g. Contopoulos 2002).
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O ORBITALNIM PERIODIMA ZA KONKRETAN SLUQAJ SFERNE SIMETRIJE
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UDK 52–323.8–336–34
Originalni nauqni rad

Prouqava se konkretan sluqaj sta-
cionarnog staǌa i sferne simetrije - tzv.
logaritamski potencijal koji je kao prva
aproksimacija naroqito primenǉiv na tamne
korone galaksija. Izraqunavana je numeriqki
za orbitu probne materijalne taqke i zavis-
nost rastojaǌa od vremena i ǌegova zavis-
nost od polo�ajnog ugla za proizvoǉne po-
qetne uslove. Glavna pa�ǌa je posve�ena
odnosu sideriqkog i anomalistiqkog perioda.
Na�eno je da se ovaj odnos neznatno meǌa za

datu sredǌu vrednost rastojaǌa do centra
sistema, da bi potom rastao sa rastu�om eks-
centriqnox�u. Ovaj kvantitativni rezultat
mo�e da se objasni qiǌenicom da za logari-
tamski potencijal odgovaraju�a kumulativna
masa raste po stepenom zakonu, a to je sluqaj
kada je odnos drugog izvoda potencijala i
kvadrata ugaone brzine za isto rastojaǌe kon-
stantan. S druge strane, u pore�eǌu sa peri-
odom kru�nog kretaǌa, oba perioda rastu sa
rastu�om ekscentriqnox�u.
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