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SUMMARY: We propose a simple procedure for evaluating the main attributes
of a Schwarzschild’s black hole: Bekenstein-Hawking entropy, Hawking temperature
and Bekenstein’s quantization of the surface area. We make use of the condition
that the circumference of a great circle on the black hole horizon contains finite and
whole number of the corresponding reduced Compton’s wavelength. It is essentially
analogous to Bohr’s quantization postulate in Bohr’s atomic model interpreted by
de Broglie’s relation. It implies the standard meaning of the black hole entropy
corresponding to surface of the quantum variation of the great circles on the black
hole horizon surface area. We present black hole radiation in the form conceptually
analogous to Bohr’s postulate on the photon emission by discrete quantum jump of
the electron within the Old quantum theory. This enables us, in accordance with
Heisenberg’s uncertainty relation and Bohr’s correspondence principle, to make a
rough estimate of the time interval for black hole evaporation, which turns out very
close to time interval predicted by the standard Hawking’s theory. Our calculations
confirm Bekenstein’s semiclassical result for the energy quantization, in variance
with Frasca’s (2005) calculations. Finally we speculate about the possible source-
energy distribution within the black hole horizon.
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1. INTRODUCTION

Quantum theory, both the Old one and Quan-
tum Mechanics, was designed to deal with micro-
scopic phenomena, irrespective of the kind of the
interaction involved. In practice, Bohr’s, Heisen-
berg’s and Schrödinger’s theories deal almost ex-
clusively with Coulombic interaction, as dominant
at the atomic level. Strong and weak forces are
restricted to nuclear and subnuclear levels and re-
quire a specific approach, outside the ordinary non-
relativistic quantum theory, partly because these in-
teractions are difficult to describe by the potential

functions. The fourth fundamental force, gravita-
tion, has been left out, for a number of reasons.
Firstly, it appears so weak in comparison with the
other three ones mentioned, that at the microscopic
level can be easily ignored. Second, it is the theory of
gravitation, Newtonian, Einsteinian or else which is
considered relevant to study gravitating bodies and
celestial phenomena in general.

1.1. Newtonian and Coulombian systems

Though reigning at very different scales of the
physical world, Newtonian and Coulombian forces
have a common formal structure which makes them
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attribute to the corresponding physical systems’
many common characteristics (see, e.g. Grujić 1993).
These common features were revealed in a particu-
larly remarkable way when the Quantum Mechan-
ics was formulated and a parallel with some General
Relativity phenomena established.

The first modern hydrogen atom model was
contrived by Thomson as the negatively charged elec-
tron immersed in a spherical positively charged fluid.
This model was to be radically changed with the later
Rutherford-Bohr model, but both had one remark-
able feature in common: the path an electron traced
while moving inside the fluid, or around the nucleus,
was the same geometrical figure, an ellipse, despite
the fact that electron experiences radically different
forces. In the Thomson’s model, the potential func-
tion is of the form

V (r) = kr2 (1)

characteristic for the harmonic oscillator, whereas for
the Coulombian interaction one has

V (r) = β/r (2)

The difference was the positions of their foci.
In the first case they were placed symmetrically with
respect to the centre of the sphere, whereas in the
motion around point-like nucleus the latter was po-
sitioned at one of the two foci. But the most remark-
able similarity was revealed when comparing the
semiclassical and quantum mechanical solutions of
the corresponding energy spectra. It turns out that
in both cases semiclassical and quantum mechanical
results coincide, for all principal quantum numbers
(the so-called correspondence identities) (see, e.g.
Norcliffe 1975). Hence, the two most important in-
teractions, harmonic and Coulombian, allow for the
semiclassical and quantum mechanical treatments in-
discriminately. At the same time, it is for these inter-
actions that any single-particle trajectory is closed,
irrespective of the initial conditions. Not acciden-
tally, these (textbook) interactions appear the only
ones that allow for exact analytical solutions, both
classical and quantum mechanical.

The energy spectra, evaluated in either of the
theories, appear however distinct. For the harmonic
oscillator of Eq. (1) it reads

En = h̄ω(n + 3/2), n = 0, 1, 2, ... (3)

whereas the Coulombic case gives

En = β2/2n2, n = 1, 2, ... (4)

The first formula provides an equidistant distribu-
tion, whereas the Bohr’s formula is the typical case
for a series of discrete levels accumulating towards
zero. It is this distinction that makes the investiga-
tion of the black hole spectrum of particularly inter-
esting, as we shall see below.

1.2 Black hole

It was only with the appearance of the con-
cept of gravitational collapse and the model of black

hole, that the gravitational force becomes dominant
and even exclusively present (see, e.g. Bekenstein
1994). In view of the formal similarity of the asymp-
totic behaviour of Newtonian and Coulombic forces,
one may expect that the properties of atomic sys-
tems with charged constituents and black-hole like
gravitational objects should share a number of com-
mon features. As noted by Bekenstein (1998), black
hole is a hydrogen atom in the field of strong grav-
ity regime. In particular, quantum effects may be
present on the black hole surface and one may ex-
pect that some quantization rules are valid.

One of the essential ingredients of the statisti-
cal mechanics was the observation that the number
of degrees of freedom of a quantum system should
be proportional to the surface of the system, rather
than to the volume. In fact, it was this assumption
which led to the Bekenstein’s linking of the black
hole entropy and the area of its horizon.

Semiclassical quantization of the black hole
has been attempted by various authors. In a recent
work, Frasca (2005) calculated the semiclassical en-
ergy spectrum of the Schwarzschild black hole mak-
ing use of the Hamilton-Jacobi formalism. For the
stable circular orbits he derived the formula

En ≈ M − 2G2M5

n2h̄2 (5)

which is, up to an additive constant M, Bohr’s for-
mula for the Coulombian interaction. In addition,
the partition function turned out to coincide with
that derived by the loop quantum gravity formalism
(see, e.g. Nicolai et al. 2005).

1.3 Black hole characteristics

Thermodynamical characteristics of a black
hole is one of the most important subjects of con-
temporary physics (see, e.g. very recent paper by
Samuel and Chowdhury 2007). In a sense, it plays
the role of the black body studies around the turn of
19th century, linking the thermodynamics and statis-
tics, more precisely the gravitation and information
theories. First, Bekenstein (1973) suggested that a
black hole contains the entropy SBH proportional to
the horizon surface area, A. For the Schwarzschild’s
black hole one has:

SBH =
kBc3

4h̄
A (6)

where kB is Boltzmann’s constant, c - speed of light
and h̄ - reduced Planck constant. Also, Bekenstein
suggested that the horizon surface area is quantized,
and can be changed only discretely

∆A = n8
Gh̄

c3
≡ n8L2

P , n = 1, 2, .. (7)

where LP = (Gh̄
c3 )

1
2 is the Planck length. Beken-

stein’s analysis is, on the one hand, based on the
characteristics of corresponding, complex quantum
measurement procedures, i.e. Heisenberg’s uncer-
tainty relations and Ehrenfest’s adiabatic theorem.
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On the other hand, it relies on general relativistic
and quantum field theoretical requirement on the
stability of the capture of a quantum system within
black hole. According to this requirement, roughly
speaking, Compton’s wavelength of a given quantum
system must be smaller than double Schwarzschild’s
radius. (Otherwise, a quantum system can escape
from the black hole by means of quantum tunnel-
ing.)

After Bekenstein, Hawking (1975, 1976)
showed that black hole can be considered as a black
body which radiates at the temperature

TH =
h̄c3

8πkBGM
(8)

where M is the black hole mass. This Hawk-
ing’s temperature, according to usual rules of the
thermodynamics, appears compatible to Bekenstein-
Hawking entropy (6). Roughly speaking, Hawking’s
analysis is physically based on the non-invariance
of the quantum field dynamics according to gen-
eral transformations of coordinates, which implies
that a wave can be considered as a complex mixture
of the plane waves (this mixture can be effectively
treated as the spectrum of the black body). Simpli-
fied, black hole can gravitationally interact with fluc-
tuated quantum vacuum near horizon. Then black
hole can absorb one member of particle-antiparticle
virtual pair, while the other member of the pair can
be effectively considered as the radiation. Mathe-
matically, Hawking’s analysis is based on a complex
formalism of the quantum fields in the curved space
(in a quasi-classical approximation). Later it has
been proved, by Hawking (1979) and others, that
Hawking’s results can be reproduced even by more
complex formalism, i.e. the quantum field dynam-
ics, without quasi-classical approximations (see, for
example, review articles by Wald (1997, 1999), and
Page (2004), and references therein).

Hawking also predicted time of the black hole
evaporation. Namely, Stefan-Boltzmann law applied
at the black hole surface area, according to Hawking
temperature (8) and relativistic equivalence relation
E = Mc2, has the form

−dE/dt = −c2dM/dt = σSBT 4
HA =

=
hc6

15360πG2M2
, (9)

where σSB is the Stefan-Boltzmann constant. It
yields, after simple integration, the following expres-
sion for black hole evaporation time

τev = 5120
πG2

h̄c4
M3

0 (10)

where M0 denotes the black hole initial mass.
Detailed analysis of the quantum and ther-

modynamical characteristics of a black hole requires
a very complex (in this moment incomplete) theo-
retical formalism including application of different
string theories (Strominger and Vafa 1996, Proline

2006). Nevertheless, there are many attempts of
analysing the quantum and thermodynamical char-
acteristics of a black hole by means of the relatively
simple (approximate) theoretical concepts. For ex-
ample, in Ram (2000), Ram et al. (2005) it is shown
that a black hole can be consistently considered as a
Bose-Einstein condensate, while in Nagatani (2007)
a conceptual analogy between the so-called mini-
mum black hole and Bohr’s model of the hydrogen
atom is considered. Even in these cases, mathemat-
ical formalism is based on various differential (e.g.
Schrödinger’s) equations solved within certain (e.g.
mean field) approximations.

2. THEORY

In this work we shall determine, in a sim-
ple way, the three most important, thermodynam-
ical characteristics of a Schwarzschild’s black hole:
Bekenstein-Hawking’s entropy, Hawking’s tempera-
ture and Bekenstein’s quantization of the surface
area. We shall use an original, simple and intuitively
transparent (quasi-classical) condition. We demand
that circumference of a great circle at the black hole
horizon contains finite (statistically averaged) num-
ber of corresponding reduced Compton’s wavelength.
It is essentially analogous to Bohr’s quantization pos-
tulate in his Old quantum theory, interpreted by
de Broglie’s ontology, according to which circum-
ference of an electron circular orbit comprises an
integer number of corresponding de Broglie’s wave-
lengths. It implies the simple usual meaning of the
black hole entropy as corresponding to the surface of
the quantum variation of the great circles at black
hole horizon surface area. Finally, we express the
black hole radiation in the form conceptually analo-
gous to Bohr’s postulate on the photon emission by
discrete quantum jump of the electron in his atomic
model. It, in accordance with Heisenberg’s energy-
time uncertainty relation and a correspondence prin-
ciple conceptually analogous to Bohr’s one, allows a
rough estimate of the time interval for black hole
evaporation. This time interval is very close to the
time interval of the black hole evaporation obtained
via Hawking’s radiation.

Thus, in this work we shall make the most
simplified but non-trivial description of the quan-
tum and thermodynamical characteristics of a
Schwarzschild’s black hole, which we simply call
Bohr’s black hole.

2.1 Bohr’s black hole

Making use of de Broglie’s relation

λ =
h

mv
(11)

and Bohr’s quantization postulate

mvnrn = n
h

2π
, n = 1, 2, ... (12)

it follows
2πrn = nλn, n = 1, 2, ... (13)
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where λn represents the electron n-th de Broglie’s
wavelength, m - electron mass, vn - n-th electron
speed, rn - radius of the n-th electron circular or-
bit and h - Planck constant. Expression (13) sim-
ply means that circumference of electron n-th circu-
lar orbit contains exactly n corresponding n-th de
Broglie’s wavelengths, for n = 1, 2, ...

We shall now apply similar analysis to
a Schwarzschild’s black hole with mass M and
Schwarzschild’s radius

RS =
2GM

c2
. (14)

We write down the following expression analogous to
(12)

mncRS = n
h̄

2π
, n = 1, 2, ... (15)

that implies

2πRS = n
h̄

mnc
, n = 1, 2, ... (16)

analogous to (9). Here 2πRS represents the circum-
ference of the black hole while

λrn =
h̄

mnc
, n = 1, 2, ... (17)

is n-th reduced Compton’s wavelength of a quantum
system captured at the black hole horizon surface
expression (16) simply means that circumference of
the black hole horizon holds exactly n reduced Comp-
ton’s wavelengths of a quantum system captured at
the black hole horizon surface. Obviously, it is essen-
tially analogous to above mentioned Bohr’s quanti-
zation postulate interpreted via de Broglie’s relation.
However, there is a principal difference with respect
to Bohr’s atomic model: in Bohr’s atomic model dif-
ferent quantum numbers n = 1, 2, ... , correspond to
different circular orbits (with circumferences propor-
tional to n2): here, any quantum number n = 1, 2, ...
corresponds to the same circular orbit (with the cir-
cumference 2πRS).

According to (16), it follows

mn = n
h̄

2πRS
= n

h̄c

4πGM
≡ nm1, n = 1, 2, ... ,

(18)
where

m1 =
h̄c

4πGM
=

M2
P

4πM
, (19)

and MP = (h̄c/G)1/2 is the Planck mass. Obviously,
m1 depends on M so that m1 decreases when M in-
creases and vice versa. For a macroscopic black hole,
i.e. for M À MP it follows m1 ¿ MP .

Suppose now that the black hole mass equals

M = σm1 =
σh̄

4πcRS
=

σh̄c

4πGM
(20)

where σ denotes some integer (or approximately in-
teger) number. According to (14,18) it follows

σ =
M

m1
=

4πGM2

h̄c
. (21)

It means that the number σ, for a fixed black hole
mass M , is finite.

After multiplying (21) by Boltzmann constant
kB we have

kBσ =
4πkBGM2

h̄c
(22)

Obviously, right-hand side of (22) represents
Bekenstein-Hawking’s entropy of the Schwarzschild’s
black hole (6). It is, therefore, reasonable to assume

SBH = kBσ =
4πkBGM2

h̄c
. (23)

This assumption implies that σ must have a statisti-
cally appropriate form to be considered later on.

Differentiation of (23) yields

dSBH = kBdσ = 8πkBGM/(h̄c3)dE (24)

where
E = Mc2 (25)

is the black hole energy. According to second law of
thermodynamics, expression (24) implies that term

T = h̄c3/8πkBGM = m1c
2/(2kB) (26)

represents the black hole temperature. Evidently,
this temperature is identical with the Hawking’s
black hole temperature (8). According to (23), (24)
it follows

dA =
32πG2

c3
MdM (27)

or, in a corresponding finite difference form,

∆A =
32πG2

c3
M∆M, ∆M ¿ M. (28)

Further, we assume

∆M = mn −mk = (n− k)m1 =

=
h̄c

4πGM
,n, k < n = 1, 2, ... (29)

which, after substitution in (28), yields

∆Ank = (n− k)8
Gh̄

c3
=

= (n− k)8L2
P, (n− k) = 1, 2, ... . (30)

Obviously, expression (30) represents Bekenstein’s
quantization of the black hole horizon surface area
(12).

In this way we have reproduced, i.e. deter-
mined in an independent way, three most important
characteristics of Schwarzschild’s black hole thermo-
dynamics: Bekenstein-Hawking’s entropy, Hawking’s
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temperature and Bekenstein’s quantization of the
surface area.

We now evaluate the necessary statistical form
of σ. We suppose that the black hole can be con-
sidered as a canonical statistical ensemble of Bose-
Einstein quantum systems. Then the statistical sum,
Z, according to (18), equals

Z =
∑
n=0

exp[− En

kBTH
] , (31)

where

En = mnc2 = n
h̄c3

4πGM
= n

MP

M

EP

4π
=

= nE1, n = 0, 1, 2, .... (32)

and where EP = MPc2 is Planck energy. (It is sup-
posed, implicitly, that n can be zero. Or, precisely,
it can be shown by a more detailed analysis, that n
can be substituted by (l(l + 1))

1
2 for l = 0, 1, ...)

Hence, our calculations provide harmonic-
oscillator-like spectrum, supporting Bekenstein’s re-
sult, and in variance with Frasca’s (2005) calcula-
tions. The difference between the latter two ap-
proaches concerns not only the mere spectrum of the
black hole energy, but may shed light onto the pos-
sible spatial energy-distribution within black hole.
As described above, equidistant energy level distri-
bution signals a uniform source-matter distribution,
as the case of Thomson’s atomic models shows. If
the harmonic-oscillator-like spectrum proves correct,
this would imply the uniformity of the gravitational
field within the horizon.

According to (8), (32), it follows

E1

kBTH
= 2 (33)

which, introduced in (31), yields

Z =
∑
n=0

exp[−2n] = exp[2]/(exp[2]− 1) (34)

Then

wn = exp[− En

kBTH
]/Z =

= (exp[2]− 1)
exp[−2n]

exp[2]
(35)

represents probability of quantum (eigenenergy)
state n.

Further, from (31) we have

M = −c−2 ∂(ln[Z])
∂(1/(kBTH))

=
∑
n=0

wnmn =

=
∑
n=0

wnnm1 = m1

∑
n=0

wnn (36)

which implies

σ =
∑
n=0

wnn =< N > . (37)

Obviously, σ can be regarded as the statistical av-
erage value, < N >, of the number of the quan-
tum (eigenenergy) states. On the other hand, σ
considered as statistically determined entropy (in kB

units), must have the form

σ = −
∑
n=0

wnln[wn] (38)

Consistency of the analysis requires that (37) and
(38) be equivalent which implies that condition

n = ln[wn], n = 0, 1, 2, ... (39)

must be satisfied. However, according to (35), it fol-
lows

ln[wn] = 2n− ln[
exp[2]− 1

exp[2]
] ≈ 2n− 0.145,

n = 0, 1, 2, ... (40)

and this reveals that condition (39) is not satisfied.
Nevertheless, we note that left- and right-hand sides
of (39) have the same order of magnitude, precisely
that for large n right hand side of (38) is twice greater
than left-hand side of (41),what appears to be an in-
teresting result.

We assume now that black hole represents a
great statistical ensemble of Bose-Einstein systems
with statistical sum

Z =
∑
n=0

exp[−En − µn

kBTH
], (41)

where µ represents the chemical potential, while n
in µn can be considered as statistical average value
of Bose-Einstein systems in quantum (eigenenergy)
state n.

Suppose, further,

µ =
E1

2
(42)

which, according to (33), implies

µn =
En

2
, n = 0, 1, 2, ... (43)

and, according to (32)

Z =
∑
n=0

exp[− En

2kBTH
]. (44)

In (41) Z can be considered as the statistical sum of
a canonical ensemble with

wn = exp[−En/2kBTH)](exp[1]− 1)exp[−n]/(Z exp[1]),

n = 0, 1, 2, ... (45)
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This implies that:

ln[wn] = n− ln[
exp[1]− 1

exp[1]
] ≈ n− 0.45,

n = 0, 1, 2, ... (46)

and
ln[wn] ≈ n, n À 1. (47)

Relation (47) implies that condition (40) concerning
the consistent statistical interpretation of σ is well
satisfied for probabilities effectively defined by (46).

Thus, we can simply and intuitively (quasi-
classically) clearly explain Schwarzschild’s black hole
entropy. Namely, we assume that the circumference
of the black hole horizon contains a (statistical) mix-
ture of the reduced Compton’s waves, any of which,
multiplied by corresponding integer quantum num-
ber, is equivalent to the given circumference. On
the one hand, entropy represents the statistical av-
erage value of given quantum numbers, i.e. numbers
of the quantum (eigenenergy) states. On the other
hand, in full agreement with usual rules of statistical
mechanics or thermodynamics, this entropy can be
considered as the entropy of a typical (great) canon-
ical statistical waves, i.e. ”micro-states”, which are
placed on the horizon, but not inside it. Also, as it
will be shown in the following, there is a process of
the black hole radiation. Accurate detection of given
radiation in any individual case allows a precise dis-
tinction of the ”micro-states”, while inaccurate de-
tection of given radiation at a statistical ensemble
corresponds to the mixture of ”micro-states”, i.e. to
the black hole entropy. For this reason, contrary to
Hawking’s assumption [3], given ”micro-states” are
not obscure, i.e. unobservable in principle.

There is an additional interesting possibility
for analysis of the Schwarzschild’s black hole entropy.
Suppose that black hole horizon surface area, rep-
resenting without quantum effects a Schwarzschild’s
sphere, contains, by means of the quantum ef-
fects, a more complex (curved) structure. Suppose
that instead of a great circle with radius RS at
Schwarzschild’s sphere, there is a great quasi-circle,
precisely, a deformed great circle representing for-
mally a static Compton’s wave with reduced Comp-
ton’s wavelength λrn. For

λrn ¿ 2πRS, n = 1, 2, ... (48)

this wave can be approximated by

un = un0 sin[2πx/λrn], x ∈ [0, 2πRS],
n = 1, 2, ... (49)

Here u0n represents un constant amplitude that will
be determined later for n = 1, 2, ... Also, the great
circle on the black hole horizon area is linearized ap-
proximately, i.e. approximated by a finite direction
with the length equivalent to the circumference 2πRS
of a given circle. Then x represents a variable that
changes along a given direction from 0 towards 2πRS .
As it is not difficult to see, it follows

∫ 2πRS

0

undx = 0, n = 1, 2, ... (50)

It means that surface area within great quasi-circle
is equivalent to surface area within great circle.

However, the following relation holds

αn =
∫ λn

4

0

undx = un0
λrn

2π
,

n = 1, 2, ... (51)

which, according to (13)-(15), implies

an = n4αn = un0
8MG

c2
= un0

8L2
P

λM
,

n = 1, 2, ... , (52)

where
λM =

h̄

Mc
(53)

is the Compton’s wavelength of the black hole.
It is obvious that an in (52) is proportional to

∆An+1n in (31) for n = 1, 2, .... Moreover, suppose

un0 = λM , n = 1, 2, ... (54)

Now, we assume

un0 ¿ RS, n = 1, 2, ... (55)

or, equivalently,

M À MP/
√

2 , (56)

that is satisfied for macroscopic black holes. Then
(52) becomes

an = 8L2
P = ∆An+1n, n = 1, 2, .... (57)

It represents the minimal change of the black
hole surface area corresponding, according to (23),
to the minimal change of the black hole entropy

∆SBH =
kBc3

4h̄
∆An+1n = 8

kBc3

4h̄
L2

P,

n = 1, 2, ... (58)

All this can be interpreted in the following
way. Quantum field effects cause small deformations
of the great circle at the black hole horizon surface,
more precisely, they change the unique classical (non-
quantum) great circle into different quantum (quasi-
classical) great quasi-circles corresponding to differ-
ent quantum states. Given changes, i.e. variations,
according to (48), (51), (55)-(57), are classically ef-
fectively unobservable, but they are observable from
the point of view of the quantum field theory (quan-
tum mechanics). Difference (58) between the classi-
cal effective non-observability and the quantum ob-
servability of given changes in any quantum state can
be considered as the minimal entropy (59). It repre-
sents a typical, usual interpretation of the entropy
according to which entropy corresponds to micro-
states unobservable by a rough (statistical) analy-
sis, but observable by a more accurate account. Of
course, since given black hole contains (statistically
averaged) σ quantum states, the total entropy of a
black hole can be roughly estimated by

SBH = σ∆SBH (59)
as an equivalent to Bekenstein-Hawking entropy.
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2.2 Energy spectrum and evaporation time

In Bohr’s atomic model we have the postu-
late on the energy emission by discrete, spontaneous,
quantum jump of the electron from a higher onto a
lower circular orbit. This quantum jump represents
an effective final result (or simplified description)
of the electromagnetic self-interaction of the atom.
Also, according to Bohr’s correspondence principle,
emission of the photon appears most probably by
quantum jump of the electron from an initial, suffi-
ciently high quantum state n onto the neighbouring
final quantum state (n− 1).

In conceptual analogy with Bohr’s atomic
model, suppose that black hole, considered as Bose-
Einstein quantum system, in some initial quantum
state n, can spontaneously and discretely (by means
of gravitational self-interaction) pass, i.e. jump, to
some final, lower quantum state k, for k < n =
1, 2, .... Suppose, also, that by this quantum jump an
effective final emission of a quantum of energy takes
place which propagates far away from the black hole.
Of course, black hole, according to its classical def-
inition, captures any physical system near horizon
by means of the gravitational interaction. Neverthe-
less, according to principles of the quantum theory,
(quantum mechanics and quantum field theory alike)
gravitationally self-interacting black hole passes from
an initially non-stable quantum state n in the final,
stable quantum state k < n by emitting one energy
quantum outside horizon. This is, of course, a simpli-
fied, phenomenological description of the black hole
gravitational self-interaction.

Energy of given energy quantum, according to
(32), equals

En − Ek = h̄ωnk, k < n = 1, 2, ... (60)

where ωnk is the circular frequency of a given energy
quantum. Then, according to (32), it follows

En − Ek = En−k = (n− k)
c3

4πGM
,

k < n = 1, 2, ... (61)

Here we assume that a correspondence princi-
ple, conceptually similar to Bohr’s, holds. More pre-
cisely, suppose that for initial, large quantum state
n, there is most probable quantum jump to the final
state k = n − 1, with corresponding emission of the
one energy quantum

En − En−1 = E1 =
h̄c3

4πGM
, n = 1, 2, ... (62)

Of course, given quantum jump can be considered
definitive, i.e. irreversible, if and only if condition

∆En+∆En−1 ¿ En−En−1 = E1, n = 1, 2, ... (63)

is satisfied. Here ∆En and ∆En−1 represent the en-
ergy natural widths of quantum states n and n − 1
and, for sufficiently large n, we assume

∆En ≈ ∆En−1 . (64)

For a more accurate form of (64), a more rigorous
form of the quantum gravitation is necessary. Nev-
ertheless, we shall simply suppose, according to (63),
(64)

2∆En ≤ E1

100
, n À 1. (65)

According to Heisenberg’s energy-time uncertainty
relation

τ∆En ≈ h̄

2
, n À 1, (66)

where τ represents the time of the one-energy quan-
tum emission or life-time of the Bose-Einstein system
in the initial quantum state, it follows

∆En ≈ h/(2t), n À 1. (67)

Then, according to (53), (55), one has:

t = 100h/E1 = 100 · 4πGM/c3, n À 1. (68)

Suppose now that a black hole is initially in
the (statistically averaged) quantum state M

m1
. Let

the black hole, according to previous discussion,
emit, by quantum jump, energy quantum E1 within
time interval τ . It implies that initial black hole
with mass M will entirely evaporate by means of
its gravitational self-interaction after a time interval
τev. Given time interval can be roughly estimated,
according to (19), (68), by

τev ≥ M

m1
100

h̄

E1
=

= 100(16π)
πG2M3

c4
≈ 5027

πG2M3

c4
. (69)

We see that the result is very close to Hawking time
for black hole evaporation (10).

3. CONCLUSION

We carried out a simplified but non-trivial
quasi-classical analysis of quantum and thermody-
namical characteristics of a Schwarzschild’s black
hole. Our analysis is conceptually analogous to
the formalism of Bohr’s atomic model and, for
this reason, black hole we consider can be simply
called Bohr’s black hole. We start by a condi-
tion, analogous to Bohr’s quantization postulate, via
de Broglie relation. This condition states that cir-
cumference of a great circle at the black hole hori-
zon contains a finite (statistically averaged) num-
ber of corresponding reduced Compton’s wavelength.
It implies simple determination of three most im-
portant thermodynamical characteristics of a black
hole: Bekenstein-Hawking entropy, Hawking’s tem-
perature and Bekenstein’s quantization of the surface
area. In particular, it allows a simple interpreta-
tion of the black hole Bekenstein-Hawking entropy.
Finally, we present the black hole radiation in the
form conceptually analogous to Bohr’s postulate on
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photon emission by discrete quantum jump of the
electron in Bohr’s atomic model. In accordance with
Heisenberg’s energy-time uncertainty relation and a
correspondence rule conceptually analogous to Bohr’
s correspondence principle, it allows a rough estimate
of the time interval for black hole evaporation. This
time interval is very close to the time interval of the
black hole evaporation obtained via Hawking’s radi-
ation.

Finally, we speculate about the relevance of
the energy spectrum for the evidence of the source-
field distribution within the horizon, which is, other-
wise, an unobservable quantity.
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BOROV SEMIKLASIQNI MODEL TERMODINAMIKE CRNE RUPE
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Originalni nauqni rad

Predlo�en je jednostavan postupak za
izraqunavaǌe osnovnih atributa Xvarcxil-
dove crne rupe: Bekenxtajn-Hokingove en-
tropije, Hokingove temperature i Bekenxtaj-
nove kvantizacije povrxine horizonta. Ko-
rix�en je uslov da obim velikog kruga ho-
rizonta sadr�i konaqan broj redukovanih
Komptonovih talasnih du�ina. Postupak
je analogan Borovom postulatu za kvanti-
zaciju atoma vodonika preko de Broǉeve
relacije. Postupak implicira uobiqajeno
znaqeǌe entropije crne rupe, u odnosu na
povrxinu kvantne varijacije velikih krugova
na horizontu. Zraqeǌe crne rupe prezen-
tirano je u obliku analognom Borovom kon-

ceptu emisije fotona putem diskrenih kvant-
nih skokova u okiru Stare Kvantne teorije.
To omogu�ava, prema Hajzenbergovim relaci-
jama neodre�enosti i Borovom principu ko-
respondencije, procenu vremenskog intervala
za ispareǌe crne rupe, za koji je na�eno da
je veoma blizak intervalu prema standardnoj
Hokingovoj formuli. Nax raqun potvr�uje
Bekenxtajnov semiklasiqni rezultat za kvan-
tovaǌe energije, a ne sla�e se sa raqunom
Fraske (Frasca 2005). Najzad, diskutovane
su posledice izraqunate energijske raspodele
na procenu raspodele energije unutar crne
rupe.
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