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SUMMARY: A model of mass distribution, applicable to globular star clusters
and proposed earlier, is reconsidered. It is shown that it can be related to the
well-known Plummer-Schuster formula, and the equations yielding its dimensionless
parameters are given. The corresponding surface density is calculated numerically.
It is indicated that in a general case the surface density should not be proportional
to the surface brightness and a more adequate formula relating these two quantities
is proposed.

Key words. globular clusters: general

1. INTRODUCTION

One of the most important questions in study-
ing the globular star clusters certainly concerns the
mass distribution within them. In this context, usual
approximations are that a typical globular cluster
(GC) is in a steady state and spherically symmet-
ric. Then the most frequently used description of the
mass distribution, is the one following from King’s
(1962) formula. However, there are two drawbacks
of this formula. The first is that it does not yield
any analytical expression for the cumulative mass,
i.e. the potential. The second is that the mass seg-
regation is not taken into account, more precisely,
it is removed by means of an unrealistic assump-
tion that all the stars belonging to a GC have the
same mass. There have been attempts to eliminate
the latter drawback by relatively complicated proce-
dures based on stellar dynamics (e.g. Da Costa and

Freeman 1976, Davoust 1977). The usual approach
has been to consider the mass distribution of stars as
discrete, involving various classes of star masses. On
the contrary, the standpoint of the present authors
as based on an earlier paper (Ninković 1996) is that
the more realistic assumption of a continuous mass
distribution of stars also offers possibilities in solving
of this problem.

The question concerning the formula for the
potential is also considered here, and a particular
formula, proposed earlier (Ninković 2003), is reex-
amined in the light of its application to GCs. We
give in the present paper a general procedure how
the observational data (profile of surface brightness)
can be corrected in order to find the mass distribu-
tion within a GC where the phenomenon of mass
segregation is taken into account. We also examine
the application of the alternative formula yielding
mass distribution.
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Table 1. Values of dimensionless parameters of eq. (1)
λ ∞ 300 200 150 100 80 60 40 20
α 0 0.0025 0.008 0.009 0.013 0.019 0.025 0.038 0.075
κ 1 0.99998 0.99997 0.99994 0.99991 0.9998 0.9997 0.9993 0.997
λ 10 8 5 3 2.7 1.5 0.85 0
α 0.15 0.185 0.29 0.45 0.5 0.7 0.9 1
κ 0.9899 0.985 0.96 0.90 0.88 0.73 0.47 0

2. MASS DISTRIBUTION WITHIN
A GLOBULAR CLUSTER

In the paper by one of the present authors
mentioned above (Ninković 2003), a particular mass
distribution, applicable to GCs as well, was studied.
However, additional remarks are necessary and they
will be given in the present paper.

As a first step, the formula for potential will
be rewritten and rediscussed.

Π =
κGM

(r2 + r2
c )1/2 − αrc

. (1)

Here G is the universal gravitational constant, M
is the total mass of the stellar system (GC), rc is
its scale length (core radius), κ and α are two di-
mensionless, non-negative, parameters and r is the
variable (distance to the centre). The interval cov-
ered by the dimensionless parameter α is α ∈ [0, 1).
In the limiting case α = 0, this mass distribution
becomes that of the Schuster, or Plummer type and
then the density vanishes in the infinity. This as-
pect was not discussed in the earlier paper (Ninković
2003). For this reason, in the present paper it will
be emphasized that such a result corroborates the
mass distribution with the corresponding potential
expressed by Eq. (1). Indeed, if the limiting radius
becomes infinite, then the factors contributing to the
limitation of the size of a GC (tidal action, etc.) are
weak and the cluster may appear as infinite. In our
opinion this is more realistic than the situation with
the models proposed by King (1962) of the one often
referred to as the modified Hubble-Reynolds model
(e.g. Ninković 1998) because they yield an infinite
total mass when the limiting radius tends to infinity.
However, if α > 0, the limiting radius is finite. Also
the behaviour of the other dimensionless parameter,
κ, follows that of α. If α = 0, then κ is equal to 1 as
should be the case for the Plummer-Schuster distri-
bution. When α > 0, then κ becomes smaller than 1.
We give here two equations which show how both α
and κ can be calculated for a given ratio of the limit-
ing radius rl to the scale length rc. One of them was
presented in the earlier paper (Ninković 2003), but
it will be given here in an improved form in which
the relation between rl/rc and α is more clearly seen;
for practical reasons the ratio of the two radii will be
denoted as λ. The equation yielding κ is obtained
from the condition for the potential: at the limiting
radius, the potential (1) equals that of a point mass
at the same distance. The corresponding formulae

are

α =
√

λ2 + 1− 2
3
√

λ2+1
λ2 − 1√

λ2+1

; (2)

κ =
√

λ2 + 1− α

λ
. (3)

In order to see the meaning of (2) and (3) clearly
enough, the dependences of α and κ on λ are pre-
sented in Table 1.

With regard to the values of the ratio rl/rc

for the GCs of our Galaxy, the small values of α
(less than 0.1) are more interesting. Thus the role of
the dimensionless parameter α can be better seen: it
appears as a correction to the Plummer (or Schuster)
formula for the potential assuming that the density
vanishes at a finite distance from the centre. In this
way, two in principle different kinds of density distri-
bution are unified, and it is thus easier to understand
why in the history of studying GCs (mostly those be-
longing to our Galaxy) both types of density distri-
bution have been proposed as correct descriptions of
the real state (see Ninković 1998 and the references
therein, also Jefferys 1976). Later on, the point of
view that GCs should be modelled as systems with
finite radius became generally accepted because the
observations have shown that the values of the lim-
iting radii can be indicated sufficiently reliably.

The values of the limiting radii for GCs be-
longing to our Galaxy, found observationally, are
viewed usually as consequences of the tidal forces.
However, the relation connecting the limiting radius
of a GC and the tidal limits is not a simple one,
among other reasons, due to the rather complicated
galactocentric motion of GCs. The observed radii
for many GCs in the Galaxy seem to be smaller than
the corresponding dynamical radii attributed to the
tidal forces (e.g. Brosche et al. 1999). In addi-
tion, a correlation between the radius of a GC and
its galactocentric distance has been established (e.g.
Zakhozhaj 2005). Due to these factors a GC can
be understood as an aggregate of stars with a finite
mass where the radius surrounding the bulk of its
stars is limited rather strongly also by the forces of
the galactic tidal field. As a consequence, a gradual
and regular density decrease, typical of the Plummer-
Schuster case, gives way to an abrupt one, and the
mass distribution is to be described by means of a
model with a well defined outer radius. Thus, it be-
comes possible to explain why one introduces and

44



ON THE DENSITY AND SURFACE BRIGHTNESS PROFILES IN GLOBULAR STAR CLUSTERS

prefers the model based on the gravitational poten-
tial given by Eq. (1).

3. SURFACE-DENSITY AND
SURFACE-BRIGHTNESS PROFILES
WITHIN A GLOBULAR CLUSTER

Unfortunately, the density, corresponding to
the potential given by (1), yields no analytical ex-
pression for the surface density. This is, obviously,
a drawback in comparison with King’s model where
one obtains analytical expressions for both volume
and surface densities.

The fact that the mass distribution (1) is close
to the Plummer-Schuster one, allows to obtain a nu-
merical solution for the surface density relatively eas-
ily. In principle, one uses the solution analogous to
the one for the Schuster case (e.g. Ninković 1998) to
introduce afterwards a correction yielding the van-
ishing of the surface density at a finite distance to
the cluster centre in projection. The correction is
not large if α is sufficiently small, and this is just the
case of special interest here (see Table 1).
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Fig. 1. Logarithmic dependence of the dimen-
sionless surface density y, y = log σ

σ(0) , on the di-
mensionless radius in projection x, x = log r̃

rc
; the

thick line corresponds to the Eq. (1), with α =
0.025, whereas the thin one pertains to the classical
Plummer-Schuster case with the same radius rc.

Fig. 1 gives the logarithmic plot for the depen-
dence of the surface density on the radius in projec-
tion. This case corresponds to a small α (α=0.025,
since the other two dimensionless model parameters
depend on it, their values can be found in Table 1)
and it shows how the slope of the classical curve cor-
responding to the Schuster law can be corrected to
obtain a curve in which the surface density vanishes
at a finite distance.

However, if we want to test the surface-density
profile presented in Fig. 1 observationally, we must
take into account that the observable, in fact, is not
the surface density, but the surface brightness. The
most simple solution is to assume that these two
quantities are proportional to each other. In our
opinion this assumption is not correct. Therefore,
we shall give here a more adequate relation.

With regard to the assumption concerning
the steady state and spherical symmetry mentioned
above, the integrated apparent magnitude of a GC
will be given as

mint = 2π

∫
I(r̃)r̃dr̃

where r̃ is, as previously, the distance to the cluster
centre in projection (or distance to the line of sight)
and I(r̃) is the surface brightness. The integral is,
clearly, taken over the entire solid angle occupied by
a cluster.

In the present paper it is also assumed that
the luminosity of a GC is due to its stars only. Thus,
the surface brightness can be represented as a prod-
uct - I = ñm̄nor - where ñ is the surface number
density of stars and m̄nor is the normalized mean ap-
parent magnitude of a star. This mean value must
be normalized because apparent magnitude is not an
additive quantity. The normalization means dividing
the average apparent magnitude by the total number
of cluster stars. Both the surface number density and
the normalized mean apparent magnitude are func-
tions of r̃, just as I. On the other hand, due to the
lack of interstellar matter assumed above, an analo-
gous relation is valid for the surface (mass) density -
σ, σ = ñm̄, where m̄ is the mean mass of a star, also
a function of r̃. From these two relations it follows
that

σ =
m̄

m̄nor
I .

From this formula it is clearly seen that the surface
density will be proportional to the surface brightness,
only if the ratio of the mean mass to the normalized
mean apparent magnitude is constant, which, under
the physical conditions, means that both are con-
stant. However, within GCs the phenomenon known
as mass segregation can take place and due to it the
mean mass and the normalized mean apparent mag-
nitude are expected to become variable. Therefore
the present authors insist on this relation as more
correct than a simple assumption of proportionality
between the two quantities.

Thus King’s formula could be accepted as
complementary to the model discussed in the pre-
vious section. Namely, there is a possibility that it
offers a correct description of the surface brightness,
but in view of the comment concerning the relation
between the surface brightness and surface density,
an a posteriori correction for the purpose of conver-
sion of the profile of the surface brightness into that
of surface density becomes necessary. Therefore, any
alternative formula describing the mass distribution
within a GC is welcome.
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4. CONCLUSION

In the present paper, a model of mass distribu-
tion proposed in Ninković (2003) is reexamined. Its
connection to the Plummer-Schuster model is shown,
and also its applicability to GCs is considered. Since
the surface density, in fact, is not an observable, but
this is the surface brightness, a formula relating the
two quantities is derived. This formula, according to
the present authors, is more correct than a simple
assumption of a mere proportionality between the
surface density and the surface brightness.
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O ZAVISNOSTI GUSTINE I POVRXINSKOG
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Originalni nauqni rad

Ponovo se razmatra jedan model
raspodele mase, predlo�en ranije, koji se
mo�e primeniti na zbijena zvezdana jata.
Pokazana je ǌegova veza sa dobro poznatom
Plamer-Xusterovom formulom i daju se
jednaqine za dobijaǌe ǌegovih bezdimen-

zionih parametara. Odgovaraju�a povrxin-
ska gustina je izraqunata numeriqki. Ukazuje
se da u opxtem sluqaju povrxinska gustina ne
treba da bude proporcionalna povrxinskom
sjaju i izvedena je jedna adekvatnija formula
koja povezuje ove dve veliqine.
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