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SUMMARY: The EM algorithm is a powerful tool to solve the membership prob-
lem in open clusters when a mixture density model overlaping two heteroscedastic
bivariate normal components is built to fit the cloud of relative proper motions of
the stars in a region of the sky where a cluster is supposed to be. A membership
study of 1866 stars located in the region of the very old open cluster M67 is car-
ried out via the Expectation Maximization algorithm using the McLachlan, Peel,
Basford and Adams EMMIX software.
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1. INTRODUCTION

M67 is a very old open cluster located at
α2000 = 8h50m26, 1s and δ2000 = +11o48

′

46
′′

. This
famous galactic object has been extensively stud-
ied through theory and observation. Regarding the
proper motions and membership determination, one
can quote the papers by Sanders (1977), Girard
(1989) and Zhao (1993). M67 is located at an esti-
mated distance of 870 pc (Girard et al. 1989). Most
studies agree to an age between 4 and 5 Gyr, mak-
ing it a representative object for population of solar
age stars (Demarque et al. 1992, Van den Berg et
al. 2004). M67 is an appropriate target of obser-
vation for the study of solar type stars since it has
the same chemical composition of the Sun (Barry
and Cromwell 1974, Giampapa 2000). A mixture
density model that overlaps two heteroscedastic bi-
variate normal components has been built to fit the
relative proper motions measured in mas per year of
1866 stars located in the region of M67, as a model

for the cluster and field stars. Proper motions greater
in absolute value than 1.5 were pruned (Fig. 1).
The data were obtained by Sanders (Sanders 1971,
1977). The parameters of the mixture have been es-
timated via the expectation maximization algorithm
following Dempster (1977). Membership probabili-
ties are obtained applying a Bayesian rule and using
the McLachlan, Peel, Basford and Adams EMMIX
software (McLachlan et al. 1999).

2. THE MODEL AND THE
LIKELIHOOD FUNCTION

A Gaussian Mixture Model has been often
used to classify into two homogeneous subpopu-
lations πi, a random sample of n observations
x1, . . . , xn, coming from a heterogeneous population
(MacLachlan et al. 2000). Let xT

j = (xj1, xj2) be
the transposed vector formed by measuring two con-
tinuous random variables Xj1, Xj2 in the individual
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j, j = 1, . . . , n. If the probability density function
(pdf) of the ith normal subpopulation, i = 1, 2, is
fi(xj , µi, Σi), with vector of means µi and variance-
covariance matrix Σi, then the multivariate variable
XT

j = (Xj1, Xj2), j = 1 . . . , n has a pdf given by the

mixture f(xj ; Θ) of two normal components:

f(xj ; Θ) =

2
∑

i=1

αifi(xj ; µi, Σi), (1)

where the components of the vector Θ are the un-
known proportions α = (α1, α2), constrained by

0 < αi < 1 and
∑2

i=1 αi = 1, the unknown compo-
nents of the vector of means µ1, µ2 and the unknown
parameters that come from the two heteroscedas-
tic variances Σi. In a first step we consider the n
× 2 matrix X with its j line, j = 1, . . . , n, given
by Xj1, Xj2. This is an incomplete matrix in the
sense that it is clearly unkown to which subpopu-
lation i, i = 1, 2, should be assigned the jth in-
dividual with a vector of observations xT

j , realiza-

tions of the random vector XT
j . In order to solve

this incomplete data problem, a complete n x (2+2)
matrix, let us say [X, Z], is formed, where Z is de-
fined by latent Bernoulli variables Zji, with Zji be-
ing one, if the jth individual belongs to the ith sub-
population πi, and zero in other case. To each in-
dividual j is then associated a vector Zj , ZT

j =
(Zj1, Zj2), with one component equals to unity an
the other being zero. It follows that Zj has a multi-
nomial distribution: Zj ∼ Multinomial(1; α1, α2):

f(Zj ; α1, α2) =
∏2

i=1 α
Zji

i , j = 1, . . . , n, and the con-
ditional density function f(Xj | Zj) is given by:

f(Xj | Zj) =
∏2

i=1 {fi(Xj ; µi, Σi)}
Zji . Then, the

joint density function f(Xj , Zj ; Θ) can be written:

f(Xj ; Zj ; Θ) =

2
∏

i=1

{

αi(2π)−1 | Σi |
−1/2

exp

[

−
1

2
(Xj − µi)

T Σ−1(Xj − µi)

]}Zji

. (2)

Denoting by Lc(Θ; X, Z) the likelihood func-
tion for the complete variable (X, Z),
it clearly follows that, Lc(Θ; X, Z) =
∏n

j=1 f(Xj , Zj ; Θ), and the loglikelihood func-

tion l will be l(Θ; X, Z) =
∑n

j=1 log f(Xj , Zj ; Θ).

In an equivalent way, l(Θ; X, Z) =
∑n

j=1

∑2
i=1 Zji {log αi + log fi(Xj ; µi, Σi)}. Esti-

mates µ̂i, Σ̂i and α̂i can be found following a maxi-
mum likelihood approach for incomplete data prob-
lems using the Expectation and Maximization steps
of the EM Algorithm proposed by Dempster, Laird
and Rubin (Dempster et al. 1977, Mclachlan et al.
2000).

The Expectation Maximization Algorithm

The EM algorithm can be applied to find es-
timates α̂i, µ̂i, Σ̂i for the parameters of the mixture
density function(4). The algorithm approaches to
the problem by solving in an indirect way the in-
complete data loglikelihood equations:

∂ log f(Xj ; Θ)

∂Θ
= ~0. (3)

This is done proceeding iteratively in terms
of the complete data loglikelihood function
log Lc(αi, µi, Σi; X, Z); as it is unobservable, it is
replaced by the conditional expectation:

EZ|X {log Lc (αi, µi, Σi; X, Z)} . (4)

The algorithm is iterative and at each iteration it
alternates the two operations of Expectation E and
Maximization M . More specifically, let Θ(0) be some
initial value for Θ. Then on the first iteration the
E-step requires the calculation of the Θ function
Q(Θ, Θ0):

Q(Θ; Θ0) = EZ|X {log Lc (Θ; X, Z)} . (5)

The M -step requires the maximization of Q(Θ, Θ0)
with respect to Θ over the parameter space Ω; that
is, we choose Θ(1) so that

Q(Θ(1); Θ0) ≥ Q(Θ; Θ0), (6)

for all Θ ∈ Ω.

The E and M steps are then carried out again, but
this time with Θ(0) replaced by the current fit Θ(1).
In the (k+1)th iteration, the E and the M steps are
defined as follows:

(i) E-step. Calculate Q(Θ; Θ(k)) where

Q(Θ; Θk) = EZ|X {log Lc (Θ; X, Z)} . (7)

(ii) M -step. Choose Θ(k+1) to be any value of Θ
that maximizes Q(Θ, Θ(k)), that is,

Q(Θ(k+1); Θk) ≥ Q(Θ; Θk) (8)

for all Θ in the parameter space Ω.

The E and M steps are iterated repeatedly until the
difference L(Θ(k+1)) − L(Θ(k)) becomes arbitrarilly
small. Dempster, Laird and Rubin (Dempster et al.
1977) show that

L(Θ(k+1)) ≥ L(Θ(k)), (9)
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for k = 1, 2, 3, . . .. Hence, convergence must be ob-
tained for a sequence of likelihood values that are to
be bounded from above. In this way the sequence
Θ(0), . . . , Θ(n) . . . leads to a likelihood estimate Θ̂.

Uniqueness and some other discussions about this Θ̂
can be found in McLachlan et al. (1997). Apply-
ing this two steps algorithm to the mixture of two
normal components requires then:
E-Step: Define Q(Θ, Θ(0)) by:

Q =







n
∑

j=1

2
∑

i=1

Zji [log αi + log fi(Xj ; µi, Σi)]







.

(10)
Then:

Q(Θ, Θ(0)) = EZ|X,Θ(0) (11)

The expectation operator E has the subscript Z |
X, Θ(0) to convey explicitly that this expectation is
being made using the density function for Z with
given X , and Θ(0) as an initial value for Θ. It fol-
lows that, in the (k + 1)th iteration, the E-step re-
quires the calculation of Q(Θ, Θ(k)), where Θ(k) is
the value of Θ after the kth EM iteration. As the
looklikelihood Lc is linear with respect by the unob-
served data Zji, the E-step in the (k +1)th iteration
simply requires the calculation of the current condi-
tional expectation of Zji given the observed data X .
Now,

EZ|X,Θ(k) = Probability{Zji = 1 | X}, and
then it clearly follows:

EZ|X,Θ(k) [Zji = 1 | X ] =
α̂

(k)
i fi(Xj , Θ̂

(k))
∑2

i=1 α
(k)
i fi(Xj µ̂

(k)
i , Σ̂

(k)
i )

,

(12)
or:

EZ|X,Θ(k) [Zji = 1 | X ] = τ̂ji(Xj , Θ
(k)). (13)

In this way, the function Q(Θ, Θ̂(k)) built in the kth
iteration of the M -step is given by:

Q(Θ, Θ̂(k)) =

n
∑

j=1

2
∑

i=1

τ̂ji(Xj ; Θ̂
(k)) {log αi+

+ log fi(Xj ; µi, Σi)} . (14)

M-Step: Obtain Θ̂(k+1) as the value of Θ that max-
imizes the Θ function Q(Θ, Θ̂(k)), k = 1, . . . ,

Θ̂(k+1) = max
Θ∈Ω

Q(Θ, Θ̂(k)), (15)

or:

Θ̂(k+1) = max
Θ∈Ω







n
∑

j=1

2
∑

i=1

τ̂ji(Xj , Θ̂
(k)) [log αi+

+ log fi(Xj ; µi, Σi)]} (16)

Clearly, to obtain α̂
(k+1)
i it suffices to maximize

Q1(αi; Θ̂
(k)) given by:

Q1(αiΘ̂
(k)) =

n
∑

j=1

τ̂ji(Xj , Θ̂
(k)) log αi −λ(

2
∑

i=1

αi −1),

(17)
i = 1, . . . , g. The λ term in the above equation takes
into account the constraint

∑2
i=1 αi = 1, using a La-

grange multiplier λ. In order to obtain µ̂
(k+1)
i , it

suffices to maximize the function Q2(µi, Θ̂
(k)),

Q2(µi, Θ
(k)) =

n
∑

j=1

τ̂ji(Xj , Θ̂
(k))

[

XT
j Σ−1

i µi −

−
1

2
µT

i Σ−1
i µi

]

(18)

In a similar way, Σ̂
(k+1)
i is obtained maximizing the

function Q3(Σi; Θ̂
(k)) given by:

Q3 =

n
∑

j=1

τ̂ji

{

−
1

2
log | Σi | −

1

2
(Xj − µi)

T Σ−1
i (Xj − µi)

}

(19)

with i = 1, 2. Thus, α̂
(k+1)
i , µ̂

(k+1)
i and Σ̂(k+1) are

eventually found by the following equations:

α̂
(k+1)
i =

1

n

n
∑

j=1

τ̂ji(Xj , Θ̂
(k)), (20)

µ̂
(k+1)
i =

1

nα̂
(k)
i

n
∑

j=1

τ̂ji(Xj , Θ̂
(k))Xj , (21)

Σ̂
(k+1)
i =

1

nα̂
(k)
i

n
∑

j=1

τ̂ji

(

Xj − µ̂
(k+1)
i

)(

Xj − µ̂
(k+1)
i

)T

.

(22)

The EM estimates Θ̂(k+1) = (α̂
(k+1)
i , µ̂

(k+1)
i , Σ̂

(k+1)
i )

are numerically found using the EMMIX software.
It is somehow amazing that the EM analytic pro-
cedure leads finally to the so called Wolfe equations
obtained by Wolfe, but following a different approach
(Wolfe 1970, Hand 1981). Those equations have also
been used to solve the membership problem in open
clusters (Cabrera et al. 1985). Both Wolfe and the
EM procedures find solutions to the same system of
nonlinear likelihood equations.
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Fig. 1. The 356 large squares are M67 Sanders stars with absolute proper motions UX or UYgrater than 1.5
arcseconds per century and have been pruned from our membership study following Zhao et al. astrometric
criterion. The 1510 small squares are stars that are the subject of this membership study working from proper
motions via the EM algorithm.

3. MEMBERSHIP RESULTS IN M67

The above outlined theory was applied to solve
the stellar membership problem in the region of the
open cluster M67 using the McLachlan EMMIX soft-
ware (McLachlan et al. 1997, 2000). The program
EMMIX built for a mixture of normal components,
uses an appropiate starting point obtained by differ-
ent multivariate cluster techniques, mainly K-means.
The vector with estimates of the parameters of the
model is found following the EM algorithm and is
given by (0.1959, -0.0441, 0.6346, 0.5320, -0.0427, -
0.0132, -0.0013, 0.0995, 0.0829, 0.0300, 0.327), where
the centroids, standard deviations and correlation
coefficient estimates for the field and for the clus-
ter are respectively given by the first five and by
the sixth to the tenth components; the last value is
the proportion of cluster stars. From the total num-

ber of 1510 stars considered in the M67 region only
534 stars have membership probabilities grater than
0.50; they are divided into probable and most proba-
ble members; this last group is formed with 322 stars
with membership probabilities grater than 0.90; 310
of them with V and B-V complete published photo-
metric data were plotted in the Hertzsprung-Russell
diagram given in Fig. 4. The photometry was taken
from Montgomery (1989) and Sanders (1989); for a
few stars Girard et al. (1989) data were used. Taking
into account spectral types and metallicity, the fol-
lowing twelve G2V solar type stars were found: 724,
777, 779, 945, 991, 1012, 1218, 1452, 1462, 1477,
1484, 1616, where the Sanders identification number
was used. EMMIX uses the BIC and the AIC cri-
teria of clustering and gives 0.933 and 0.944 as esti-
mates of correct allocation rates for each component,
the field and the cluster, and the estimate of total
correct allocation rate equals 0.937. The Member-
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ship probabilities are listed in Table 1;1 ID1 and ID2
are respectively a sequential number and the Sanders
identification number; µx and µy are the proper mo-
tions data; P1 and P2 are membership probabilities
given respectively by Sanders and in our study. The
membership results are in good agreement with pre-
viously published papers by Sanders (1977), Girard
(1989) and Zhao (1993), that are the main M67 mem-
bership studies (Fig. 2 and Fig. 3).

4. CONCLUSIONS

The EM algorithm is a powerful tool to solve
the membership problem in open clusters when a
mixture of two bivariate normal components mod-
els the cloud of proper motions of a region of the sky
where a cluster is supposed to be. It leads directly to
a point of the parameter space that is a local maxi-
mum of the likelihood function. Then, membership
probabilities are found using the Bayes theorem. The
program EMMIX built for a mixture of normal com-
ponents, uses an appropiate starting point obtained
by different multivariate cluster techniques, mainly
K-means, and it uses the BIC and AIC criteria to es-
timate allocation rates for each component, the field
and the cluster.
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Fig. 2. M67 564 Sanders probable members with membership probabilities grater than 0.50. (vertical lines)
and 534 M67 probable members according to our study (horizontal lines); the inclined lines are 430 Girard
members at the same probability level.

1http://saj.matf.bg.ac.yu/173/pdf/Table1.pdf
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Fig. 3. M67 480 Sanders probable members with membership probabilities grater than 0.80. (vertical lines)
and 438 M67 probable members at the same probability level according to our study (horizontal lines).
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Fig. 4. M67 Color Magnitude Diagram built with the 310 most probable members. The triangles are 39
M67 binary stars.
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ALGORITAM ZA MAKSIMIZACIJU OQEKIVAǋA KAO

MO�NA ALATKA ZA ODRE�IVAǋE PRIPADNOSTI

ZVEZDA RAZVEJANOM JATU, PRIMENA NA M67

A. Uribe, R. Barrera and E. Brieva

Observatorio Astronómico, Facultad de Ciencias, Universidad Nacional de Colombia,
Apartado Aéreo 2584, Bogotá, Colombia

UDC 524.45M67–16–17
Originalni nauqni rad

EM algoritam je mo�na alatka za rexa-
vaǌe problema pripadnosti u razvejanim ja-
tima kada se obrazuje model gustine mexa-
vine koji preklapa dve heterosedastiqke bi-
varijantne normalne komponente da bi se do-
bilo dobro slagaǌe za oblak relativnih sop-
stvenih kretaǌa zvezda u oblasti neba gde

se pretpostavǉa da �e jato da bude smex-
teno. Ispituje se pripadnost za 1866 zvezda
koje se nalaze u poǉu vrlo starog razve-
janog jata M67 korix�eǌem algoritma za mak-
simizaciju oqekivaǌa, a primenom softvera
EMMIX qiji su tvorci MekLaflin, Pil, Bas-
ford i Adams.
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