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SUMMARY: In this paper one presents an analytical model of accretion disk
magnetosphere dynamics around supermassive nonrotating black holes in the cen-
ters of active galactic nuclei. Based on general relativistic equations of magnetohy-
drodynamics, the nonstationary solutions for time-dependent dynamo action in the
accretion disks, spatial and temporal distribution of magnetic field are found. It is
shown that there are two distinct stages of dynamo process: the transient and the

steady-state regimes, the induction of magnetic field at t > 6.6665× 1011GM/c3
s

becomes stationary, magnetic field is located near the innermost stable circular or-

bit, and its value rises up to ∼ 105
G. Applications of such systems with nonrotating

black holes in real active galactic nuclei are discussed.
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1. INTRODUCTION

Black hole accretion flows are the most likely
central engine for quasars and active galactic nu-
clei (AGN) (Zeldovich 1964, Salpeter 1964). There-
fore, they are the subject of intense astrophysi-
cal interest and speculation. Recent observations
from XMM-Newton, Chandra, Hubble, VLBA, and
other ground- and space-based observatories have ex-
panded our understanding of the time variability,
spectra, and spatial structure of AGN. Radio in-
terferometry, in particular, has been able to probe
within a few hundred gravitational radii (GM/c2)
of the central black hole, e.g. Lo et al. (1998),
Junor et al. (1999), Doeleman et al. (2001). De-
spite these observational advances, only instruments
now in the concept phase will have sufficient angu-
lar resolution to spatially resolve the inner accretion
disk (Rees 2001). Thus there remain fundamental
questions that we can answer only by simulating the
observations through models of AGN structure.

All black hole accretion flow models require
that angular momentum be removed from the flow
in some way so that material can flow inwards. In one
group of models, angular momentum is removed di-
rectly from the inflow by, e.g., a magneto-centrifugal
wind (Blandford and Payne 1982). Here we will focus
our attention on another group of models in which
angular momentum is diffused outward through the
accretion flow.

It has been long suspected that the diffusion
of angular momentum through an accretion flow is
driven by turbulence. The α model (Shakura and
Sunyaev 1973) introduced a phenomenological shear
stress into the equations of motion to model the ef-
fects of this turbulence. This shear stress is propor-
tional to αP , where α is a dimensionless constant
and P is the (gas or gas + radiation) pressure. This
shear stress permits an exchange of angular momen-
tum between neighboring, differentially rotating lay-
ers in an accretion disk. In this sense it is analogous
to a viscosity (Lynden-Bell and Pringle 1974) and is
often referred to as the ”anomalous viscosity”.
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The α model artfully avoids the question of
the origin and nature of turbulence in accretion
disks. This allows useful estimates without solv-
ing a difficult, perhaps intractable, problem. Re-
cently, however, significant progress has been made
in understanding the origin of turbulence in accretion
flows. It is now known that, in the magnetohydro-
dynamic (MHD) approximation, an accreting, dif-
ferentially rotating plasma is destabilized by a weak
magnetic field (Balbus and Hawley 1991, Hawley and
Balbus 1991). This magneto-rotational instability
(MRI) generates angular momentum transport un-
der a broad range of conditions. Numerical work has
shown that in a plasma that is fully ionized, which
is likely the case for the inner regions of most black
hole accretion flows, the magnetorotational instabil-
ity is capable of sustaining turbulence in the nonlin-
ear regime (Hawley and Balbus 1991, Hawley et al.
1995, Hawley 2000, Hawley and Krolik 2001).

AGN may be powered by the electromagnetic
braking of a rapidly rotating black hole. The Bland-
ford and Znajek (1977) effect (here, broadly defined
as any electromagnetic way of extracting energy from
a rotating black hole) is the most likely astrophysical
means of extracting energy from a rapidly rotating
black hole. Estimates for the nominal black hole spin
in astrophysical environments give a rapid black hole
spin of about a ∼ 0.92 (Gammie 2004). Phenomeno-
logical estimates determined that the Blandford and
Znajek luminosity is likely small compared to the
disk luminosity (Ghosh and Abramowicz 1997, Ar-
mitage and Natarajan 1999, Livio et al. 1999).

Research on magnetized disks has now turned
to global numerical models. These are possible
thanks to advances in computer hardware and al-
gorithms. Recent work by Hawley (2000), Stone and
Pringle (2001), and Hawley and Krolik (2001) con-
siders the evolution of inviscid, nonrelativistic MHD
accretion flows in two or three dimensions. Some
of these works use a pseudo-Newtonian, or Paczyn-
ski and Wiita (1980), potential as a model for the
effects of strong-field gravity near the event horizon.

Other work on global models has considered
the equations of viscous, compressible fluid dynamics
as a model for the accreting plasma (Igumenshchev
and Abramowicz 1999, Stone et al. 1999, Igumen-
shchev and Abramowicz 2000, Igumenshchev et al.
2000). The viscosity is meant to model the effect
of small scale turbulence, presumably generated by
magnetic fields, on the large scale flow. In light of
work on numerical MHD models, this may seem like
a step backwards.

The existing MHD models of accretion disks
and flows, however, are computationally expensive,
complicated and introduce new problems with re-
spect to initial and boundary conditions. Therefore,
there are no models today (even numerical), which
are able to describe dynamics and evolution of ac-
cretion disks in account of time-dependent accretion
flow regimes, hydromagnetic dynamo, large spin of a
central black hole, and electromagnetic extracting of
its energy. In this paper we propose analytical model
of nonrotating black hole magnetosphere dynamics,
based on solutions of general relativistic MHD equa-

tions, taking into account hydromagnetic dynamo ef-
fect.

2. EQUATIONS OF DYNAMO
IN ACCRETION DISK

In this section we derive basic equations of
GRMHD induction and find their solutions govern-
ing dynamo action in accretion disk around nonro-
tating Schwarzschild black hole. Doing this we are
interested mainly in nonstationary solutions, which
can show dynamics of accretion disk magnetic fields.
We use formalism well known in general relativity
where c = G = 1.

Let us consider two dimensional matter inflow
velocities: −→

V = Vϕêϕ − Vr êr. (1)

Matter in the inner disk regions is mainly in the
plasma state. Therefore, dynamo action can take
place in it. For perfect plasma with infinite con-
ductivity we can write equations of magnetohydro-
dynamics in general relativity (GRMHD). Following
Komissarov (1999), Shibata and Sekiguchi (2005) we
have
{

∂
∂t

(√−gBi
)

= − ∂
∂xj

[√−g
(

bjui − biuj
)]

,
1√
−g

∂
∂xi

(√−gBi
)

= 0, {i, j} = (1, 2, 3),

(2)
where

{

bt = Biuµgiµ,
bi =

(

Bi + btui
)

/ut,
(3)

µ = (1, 2, 3, 4), Bi = F ∗it — components of mag-

netic field vector, uµ = dxµ

ds — 4-velocity of accretion
disk matter. In (2) g is determinant of Schwarzschild
metric tensor:

det gµν = −r4 sin2 θ. (4)

As accretion disk is assumed to be two dimensional,
θ = π/2, and

√−g = r2. System (2) can be rewritten
in the form:
{ ∂

∂t (
√−gBr) = − ∂

∂φ

[√−g
(

bφur − bruφ
)]

,
∂
∂t

(√−gBφ
)

= − ∂
∂r

[√−g
(

bruφ − bφur
)]

,
(5)

and














∂
∂t (

√−gBr) =
= − ∂

∂φ

[√−g
(

Bφur/ut − Bruφ/ut
)]

,
∂
∂t

(√−gBφ
)

=
= − ∂

∂r

[√−g
(

Bruφ/ut − Bφur/ut
)]

.

(6)

In view of accretion symmetry along direction of φ
{

Bφ = Bφ(r, t),
Br = Br(r, t),

(7)

we can write:

∂

∂t
(
√−gBr) = 0. (8)
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The last expression leads to Br√−g = const. There-
fore radial component of magnetic field vector does
not depend on time coordinate t:

Br = Br
0

(r0

r

)2

. (9)

In (9) r0 is the outer radius of the accretion disk,
B0 denotes the initial value of magnetic field, frozen
in interstellar medium in the center of a galaxy. In
further calculations, B0 is assumed to be 10−7 G
(Gaensler et al. 2004).

Our next step is to derive analytical expres-
sion for Bφ. Combining the result (9) with the sec-
ond equation of the system (6) we have:

r2 ∂Bφ

∂t
= − ∂

∂r

[

B0r
2
0

uφ

ut
− r2Bφ ur

ut

]

. (10)

Since uφ,r/ut = Vφ,r, it is possible to rewrite the last
equation as:

∂Bφ

∂t
−∂Bφ

∂r
Vr = Bφ

(

2

r
Vr +

∂Vr

∂r

)

−B0

(r0

r

)2 ∂Vφ

∂r
.

(11)
The result (11) is a differential equation with par-
tial derivatives. Its solution yields Bφ as a function
of t and r. It is necessary to note that we always
use coordinate time (not the proper one) throughout
this paper. Eq. (11) is equivalent to the system of
ordinary differential equations of the first order:

dt = −dr

Vr
=

dBφ

Bφ
(

2
r Vr + ∂Vr

∂r

)

− B0

(

r0

r

)2 ∂Vφ

∂r

. (12)

The first equation of this system,

dBφ

dt
= Bφ

(

2

r
Vr +

∂Vr

∂r

)

− B0

(r0

r

)2 ∂Vφ

∂r
, (13)

has solution

Bφ = B0

(r0

r

)2 ∂Vφ

∂r

1

2Vr/r + ∂Vr/∂r
+

+C1 exp (2Vr/r + ∂Vr/∂r) t. (14)

Taking into account our definition of initial veloc-
ity field (1), we should change sign in front of Vr.
Therefore Vr −→ −Vr, and

Bφ = −B0

(r0

r

)2 ∂Vφ

∂r

1

2Vr/r + ∂Vr/∂r
+

+C1 exp (−2Vr/r − ∂Vr/∂r) t. (15)

The second equation of the system (12) and its solu-
tion are:

dt =
dr

Vr
=⇒ C2 = r − Vrt. (16)

In the expressions, derived C1 and C2 are constants
which should be determined.

The general solution of (12) is an arbitrary
function

F (Φ1, Φ2) = 0, (17)

where
{

Φ1 = C1(r, t),
Φ2 = C2(r, t).

(18)

We choose linear function, i.e.

F (Φ1, Φ2) = a0 + a1Φ1(r, t) + a2Φ2(r, t). (19)

One of the coefficients can be made equal to unity
(e.g. a1 = 1). Therefore, we have:

Bφ = −B0

(r0

r

)2 ∂Vφ

∂r

1

2Vr/r + ∂Vr/∂r
+

+ [a0 + a2(r − Vrt)] e
−(2Vr/r+∂Vr/∂r)t. (20)

During further calculations we shall express
radial and time coordinate in the units of gravita-
tional radius Rg = GM/c2 , i.e. R = r/M , and
T = t/M , where M is mass of the central black hole.
The next step is to find constants a0 and a2 using
initial and boundary conditions. At T = 0 magnetic
field is located at R = R0, and it is equal to B0,
therefore

a0 = B0 − a2R0. (21)

Boundary condition is of the form

Bφ
∣

∣

R=R0

= B0. (22)

To find Bφ explicitely, we ought to derive the ex-
pression for Vr. It is impossible to find it neither
theoretically nor experimentally today, so that we
use estimation Vr = αVφ, where α is a constant con-
siderably smaller than unity. It is assumed herewith
to be equal 10−6. This corresponds to rather slow
accretion and viscous disk. Vφ = 1/

√
R is Keplerian

velocity of tangential motion. Therefore (22) leads
to:

a2 =

√
R0

αT
B0

[

1 +

(

1

3α
− 1

)

exp

{

3

2
αR

−3/2
0 T

}]

.

(23)
Combining (21), (23) with (20) we have

Bφ = B0

(

R0

R

)2
1

3α
+B0

[

exp

{

−3

2
αR

−3/2
0 T

}

−

−R0

√
R0

3α2T
+

√
R0

3α2T

(

R − αT√
R

)]

×

× exp

{

−3

2
αT

(

1

R3/2
− 1

R
3/2
0

)}

. (24)

However, the formula (24) is not the final solution for
magnetic field component Bφ. It is necessary to take
into account the fact that the magnetic field exists
only in the region where the accreted matter already
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arrived, i.e. in the region R ≥ R0 − 〈Vr〉rT . More
exactly, this condition should be written as

∫ R0

R

dR

Vr
≤
∫ T

0

dT =⇒ R3/2 ≥ R
3/2
0 − 3

2
αT. (25)

Expressions (9) and (24) together with condition (25)
define distribution of magnetic field vector compo-
nents along the plane of accretion disk and its time
dependence.

3. RESULTS AND DISCUSSION

Based on results of analytical derivations in
the previous section it is possible to plot spatial and
temporal distribution of magnetic-field vector in the
accretion disk. To do this, we ought to define some
input parameters of the model. First of all, initial
magnetic field is assumed to be B0 = 10−7 G, as
pointed out in the previous section. In our model, we
need to know exactly the explicit form of the expres-
sion for radial velocity in the disk. However, this is
connected with great difficulties today (Bisnovatyi-
Kogan and Lovelaca 2001, Poplavsky et al. 2003,
Poplavsky 2005). Unfortunately, problem of viscos-
ity in the disk, which defines radial velocity of ac-
creted plasma, is far from its solution today. There-
fore, we use the estimate for radial component of
plasmas velocity Vr = αVφ, where Vφ = R−1/2 is
the Keplerian velocity of a circular orbit. The main
problem of this model is to estimate dimensionless
parameter α, which can be connected with viscosity
process in the accretion disk. Our ”viscosity param-
eter” α is different from α-parameter in standard
accretion model (Shakura and Sunyaev 1973). We
assume the value of α to be 10−6. This case cor-
responds to rather viscous disk and slow accretion.
Such a case seems to be common in real astrophys-
ical conditions, and contemporary accretion models
(e.g. Bisnovatyi-Kogan and Lovelaca 2001, Hawley
2000, Hawley and Krolik 2001) are in a good agree-
ment with it. The last arbitrary parameter of the
model is the outer radius R0 of the accretion disk.
We assume it to be equal 10 000. With this value
of R0, the disk remains thin according to the model
created by Collin and Hure (2001) as the best fit of
contemporary experimental data.

The resulting plots are presented in Fig. 1. As
in the previous section, distance R and time T are
expressed in gravitational radii Rg. Fig. 1 shows sev-
eral plots with R-distribution of magnetic-field vec-

tor ~B ( ~B ' Bφêφ, as Bφ � Br) for different instants
of coordinate time T . It is possible to see the ”wave
of magnetic field” that propagates from the outer
borders of the disk R0 inwards. At the initial mo-
ment of time, T = 0, the magnetic field is on the
outer border of the disk, where B = B0 = 10−7 G.
In the inner parts of the disk B = 0, as there is no
accreted plasma there. Then nonzero magnetic field
is aligned with plasma motion via dynamo action. In
Fig. 1 one can see different stages of dynamo pro-
cess. All of them are essentially nonlinear. The most

noticeable feature of the process is burst of magnetic
field near the time dependent inner border of the ac-
cretion disk. In spite of large scales of the dynamo
action, for the space of whole accretion disk, induced
magnetic field is rather small. It rises greatly (up to
∼ 105 G for α = 10−6) only when the radius of in-
nermost stable circular orbit for Schwarzschild black
hole (R = 6) is attained.

Analyzing the results obtained in our analyt-
ical modeling, one can notice two main stages of
accretion and magnetic field induction. They are:
transient regime and steady-state condition. Transi-
tion between them is realized when accreted plasma
reaches the innermost stable orbit, i.e. R = 6. Such
a transition takes place for T > Ta, where Ta is pe-
riod of time for the matter to arrive at the innermost
stable orbit:

Ta = −
∫ 6

R0

dR

Vr
= 6.6665× 1011. (26)

For T > Ta, the steady-state regime is at-
tained. Accretion and dynamo process become time-
independent. To estimate the value of Ta, we get
back to SI system. Accretion period in seconds is

ta = Ta
GM

c3
, (27)

and, finally,

ta [years] = 0.104
M

M�
. (28)

Fig. 2 illustrates the last formula. It shows the re-
lation between the mass of the central supermassive
black hole and the accretion period. It is possible
to see that ta achieves the value of ∼ 108 years for
M/M� = 109. This corresponds, e.g. to active
galactic nucleus of M87 (Ferrarese and Ford 2004).

The last point to be discussed is the role of
Schwarzschild black holes in AGN activity. AGNs
seem to contain fast spinning black holes in their cen-
ters. This is an inevitable phenomenon, when angu-
lar momentum is conserved during black hole forma-
tion in the centers of parent galaxies. Schwarzschild
black holes are possible at late stages of AGN evo-
lution when the initial Kerr black holes lose their
angular momentum and become nonrotating. They
also seem possible at eventual repeats of AGN activ-
ity.

Thus, main results of this paper are the fol-
lowing.

1. We found analytical solutions of GRMHD
equations for dynamo effect in accretion disks of su-
permassive nonrotating black holes.

2. We showed that radial component of
magnetic-field vector Br is time independent, and
Bφ � Br when Vφ � Vr.

3. We found that dynamo action consists of
two regimes, transient and steady-state. During the
steady-state mode magnetic field is located near the
inner border of the accretion disk. It reaches up to
∼ 105 G at the innermost stable circular disk orbit.
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4. This value of maximum magnetic field is
rather low in comparison to pulsars and magnetars.

5. The existence of such systems with non-
rotating black holes is possible during late stages of
AGN evolution and repeats of their activity.
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Fig. 1. Distribution of azimuth component of magnetic-field vector along radial coordinate of the accretion
disk plane. Plots correspond to the times T : 1010, 1011, 5×1011, 6×1011, 6.5×1011, 6.6×1011, 6.65×1011,
6.66657× 1011 (T = t/Rg).
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Fig. 2. Mass of the central black hole in AGN — time of reaching the innermost stable circular orbit
dependence. Value of ta is expressed in millions of years, black hole mass M — in millions of solar masses.
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DINAMO VELIKIH RAZMERA KOD AKRECIONIH DISKOVA

OKO SUPERMASIVNIH NEROTIRAJU�IH CRNIH RUPA

A. L. Poplavsky, O. P. Kuznechik and N. I. Stetyukevich

Observatory of Belarusian State University
Nezaliezhnasti Av. 4, 220030 Minsk, Belarus

UDK 524.7–43–337–468 : 524.882
Originalni nauqni rad

U ovom radu je predstavǉen anali-
tiqki model dinamike magnetosfere kod akre-
cionih diskova oko supermasivnih neroti-
raju�ih crnih rupa u centrima aktivnih
galaktiqkih jezgara. Polaze�i od jednaqina
magnetohidrodinamike u Opxtoj teoriji re-
lativnosti, na�ena su nestacionarna rexeǌa
za dinamo mehanizam u akrecionim diskovima,
kao i prostorna i vremenska raspodela mag-
netnog poǉa. Pokazano je da postoje dve

razliqite etape dinamo procesa: prelazni
re�im i stabilni re�im, da indukcija mag-
netnog poǉa postaje vremenski nezavisna za
t > 6.6665 × 1011GM/c3, kao i da se magnetno
poǉe nalazi blizu najmaǌe stabilne kru�ne
orbite i da ǌegova vrednost raste do ∼ 105

G. Diskutovane su i primene takvih sistema
sa nerotiraju�im crnim rupama na prava ak-
tivna galaktiqka jezgra.
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