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SUMMARY: Elliptical galaxies are modelled as homeoidally striated Jacobi
ellipsoids (Caimmi and Marmo 2005) where the peculiar velocity distribution is
anisotropic, or equivalently as their adjoint configurations i.e. classical Jacobi ellip-
soids of equal mass and axes, in real or imaginary rotation (Caimmi 2006). Reasons
for the coincidence of bifurcation points from axisymmetric to triaxial configura-
tions in both the sequences (Caimmi 2006), contrary to earlier findings (Wiegandt
1982a,b, Caimmi and Marmo 2005) are presented and discussed. The effect of cen-
trifugal support at the ends of the major equatorial axis is briefly outlined. The
existence of a lower limit to the flattening of elliptical galaxies is investigated in deal-
ing with a number of limiting situations. More specifically, (i) elliptical galaxies are
considered as isolated systems, and an allowed region within Ellipsoidland (Hunter
and de Zeeuw 1997), related to the occurrence of bifurcation points from ellipsoidal
to pear-shaped configurations, is shown to be consistent with observations; (ii) el-
liptical galaxies are considered as embedded within dark matter haloes and, under
reasonable assumptions, it is shown that tidal effects from hosting haloes have little
influence on the above mentioned results; (iii) dark matter haloes and embedded
elliptical galaxies, idealized as a single homeoidally striated Jacobi ellipsoid, are
considered in connection with the cosmological transition from expansion to relax-
ation, by generalizing an earlier model (Thuan and Gott 1975), and the existence of
a lower limit to the flattening of relaxed (oblate-like) configurations, is established.
On the other hand, no lower limit is found to the elongation of relaxed (prolate-like)
configurations, and the existence of some sort of instability is predicted, owing to
the observed lack of elliptical galaxies more flattened or elongated than E7.

Key words. dark matter – Galaxies: evolution – Galaxies: formation – Galaxies:
halos – Galaxies: structure.

1. INTRODUCTION

Large-scale celestial objects, represented as
self-gravitating fluids, exhibit different features if
their subunits, or ”particles”, are conceived as ”col-
lisional” or ”collisionless”.

In the former alternative, the gravitational
field that is generated by the system as a whole is
negligible with respect to the force between two col-

liding subunits, when they repel each other strongly.
Consequently, particles in self-gravitating, collisional
fluids, are subjected to violent and short-lived ac-
celerations when they are sufficiently close to each
other, interspersed with longer periods when they
move at nearly constant velocity.

In the latter alternative, the gravitational field
that is generated by the system as a whole is dom-
inant with respect to the force between two sub-
units, even if they are close to each other. Conse-
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quently, particles in self-gravitating, collisionless flu-
ids, are subjected to smooth and long-lived acceler-
ations along their trajectories.

Gas in stars and stars in stellar systems may
be approximated, to a good extent, as collisional and
collisionless, ideal self-gravitating fluids, respectively.
The statistical problem of particle motion in the lat-
ter case is that of the former, with the collisions left
out. ”Ideal” has to be understood as ”particles col-
lide as perfect and undeformable spheres” in the for-
mer situation, and ”particles do not interact with
each other at all” in the latter.

The motion equation of fluid flow turns out to
be the same for both collisional and collisionless flu-
ids (e.g. Jeans 1929, Chap. II, § 26, Chap. VII, §§ 211-
215, Binney and Tremaine 1987, Chap. 4, § 4.2) pro-
vided gases are thought of as being far from equi-
librium. Then the velocity distribution of molecules
no longer obeys the Maxwell distribution and is, in
general, anisotropic; accordingly, the pressure is rep-
resented by a stress tensor. In the special case of
isotropic velocity distributions, the pressure attains
its usual meaning and the motion equation reduces
to the Euler’s equation, provided the velocity of an
infinitesimal fluid element is intended as the mean
velocity of all the particles within the same element
at the time considered. On the contrary, the Euler’s
equation for a given fluid with isotropic distribution
can be generalized to an anisotropic one, by replac-
ing velocities with mean velocities and pressures with
stress tensors, in the sense specified above.

For special classes of ideal, self-gravitating flu-
ids, such as steadily rotating polytropes with poly-
tropic index n ≥ 1/2 (Vandervoort 1980a) and
isothermal spheres (e.g. Binney and Tremaine 1987,
Chap. 4, § 4.4b), a one-to-one correspondence has
been established between collisional and collisionless
systems with equal physical parameters. Steadily
rotating polytropes may be represented, to a first
extent, as steadily rotating, homeoidally striated el-
lipsoids (e.g. Vandervoort 1980b, Vandervoort and
Welty 1981, Lai et al. 1993).

Though most astronomical bodies exhibit
ellipsoidal-like shapes and isopycnic surfaces, still
some caution must be used in dealing with the above
approximation, with regard to local values of physi-
cal parameters. This is why steadily rotating poly-
tropes are in hydrostatic equilibrium while, owing to
the Hamy’s theorem (e.g. Chambat 1994), the con-
trary holds for their homeoidally striated ellipsoidal
counterparts. On the other hand, homeoidally stri-
ated ellipsoids may safely be assumed as a viable ap-
proximation to self-gravitating fluids, with regard to
typical values of physical parameters, averaged over
the whole volume1(e.g. Vandervoort 1980b, Vander-
voort and Welty 1981, Lai et al. 1993).

Large-scale celestial objects have been mod-
elled as collisional, self-gravitating fluids, in partic-

ular homeoidally striated ellipsoids, since the begin-
ning of their classification (see e.g. Chandrasekhar
1969, Chap. 1). The evidence of rotation in spiral
galaxies and the symmetry of figure shown by ellipti-
cal galaxies and spiral bulges, suggested the following
(e.g. Jeans 1929, Chap. XIII, § 299): (i) all (regular)
galaxies rotate; (ii) the symmetry of figure is pre-
cisely such as rotation might be expected to produce;
(iii) the observed shapes of (regular) galaxies can be
explained as the figures assumed by masses rotating
under their own gravitation. In particular, the sys-
tem of primeval stars must have conserved roughly
the same shape as the original mass of gas from which
it emerged (e.g. Blaauw 1965). The lack of ellipti-
cal galaxies more flattened than E7 was explained
in a classical paper (Thuan and Gott 1975) where
virialized elliptical galaxies and their parent density
perturbations are modelled as MacLaurin spheroids
and homogeneous, rigidly rotating spheres, respec-
tively.

Since then, observations began to yield in-
creasing evidence that (giant) elliptical galaxies can-
not be sustained by systematic rotation (e.g. Bertola
and Capaccioli 1975, Binney 1976, Illingworth 1977,
1981, Schechter and Gunn 1979). Accordingly, (gi-
ant) elliptical galaxies were conceived as collisionless,
self-gravitating fluids, with triaxial2 boundaries set
by specific anisotropic peculiar velocity distribution
of stars (Binney 1976, 1978, 1980), and a negligible
contribution from figure rotation. Owing to high-
resolution simulations, the same holds also for (non-
baryonic) dark matter haloes hosting galaxies and
cluster of galaxies (e.g. Hoeft et al. 2004, Rasia et
al. 2004, Bailin and Steinmetz 2004).

Isotropic peculiar velocity distributions neces-
sarily imply configurations which rotate around the
minor axis. Accordingly, empirical evidence of sys-
tematic rotation around the major axis (e.g. Bertola
and Galletta 1978), in absence of tidal potential, rep-
resents a signature of the occurrence of anisotropic
peculiar velocity distribution.

Though anisotropy in peculiar velocity distri-
bution is a basic ingredient in the description and in-
vestigation of stellar systems and hosting dark mat-
ter haloes, still no attempt (to the knowledge of
the author) has been made to explain why ellip-
tical galaxies more flattened than E7 do not ex-
ist, following the same line of thought as in Thuan
and Gott (1975), with regard to collisionless flu-
ids. This paper aims to address this lack, and is
based on a theory that systematic and random mo-
tions are unified (Caimmi 2006, hereafter quoted as
C063). To this aim, the procedure used by Thuan
and Gott (1975) shall be extended from MacLau-
rin spheroids to homeoidally striated Jacobi ellip-
soids (Caimmi and Marmo 2005, hereafter quoted as

1An important exception is the energy ratio of rotational to random motions, Erot/Epec (Caimmi 1979, 1983).

2Strictly speaking, all tridimensional bodies may be conceived as triaxial, in particular spheres and spheroids. Throughout this
paper, ”triaxial” shall be intended as denoting ellipsoids where the axes are different in length.

3A more extended file including an earlier version of the current paper is available at the arxiv electronic site, as astro-
ph/0507314.
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CM054), where the effect of peculiar motion excess,
implying anisotropic peculiar velocity distribution, is
equivalent to the effect of additional (real or imagi-
nary) rotation, related to isotropic peculiar velocity
distribution (C06).

This paper is structured in the following man-
ner. The general theory of homeoidally striated Ja-
cobi ellipsoids, and the relevant results, are outlined
in Section 2. A unified theory of systematic and ran-
dom motions, implying a definition of imaginary ro-
tation, and the relevant results, are outlined in Sec-
tion 3. An extension of Thuan and Gott (1975) pro-
cedure to homeoidally striated Jacobi ellipsoids in
real or imaginary rotation, and the relevant results,
are outlined in Section 4. The existence of a lower
limit to the flattening of elliptical galaxies is investi-
gated in Section 5 taking into consideration a number
of simplified situations, namely (i) elliptical galaxies
as isolated systems; (ii) elliptical galaxies as embed-
ded in dark matter haloes; (iii) dark matter haloes
and hosted elliptical galaxies, idealized as a single
homeoidally striated Jacobi ellipsoid, in connection
with the cosmological transition from expansion to
relaxation. Some concluding remarks are drawn in
Section 6, and a few arguments are treated in more
detail in the Appendix.

2. GENERAL THEORY

2.1 Homeoidally striated Jacobi ellipsoids

A general theory for homeoidally striated den-
sity profiles has been developed in earlier studies
(Roberts 1962, Caimmi 1993a, Caimmi and Marmo
2003, hereafter quoted as CM03, CM05), and an in-
terested reader is addressed therein for deeper in-
sight. What is relevant for the current investigation,
shall be mentioned and further developed here.

The isopycnic (i.e. constant density) surfaces
are defined in the following equations:

ρ = ρ0f(ξ) ; f(1) = 1 ; ρ0 = ρ(1) ; (1a)

ξ =
r

r0
; 0 ≤ ξ ≤ Ξ ; Ξ =

R

r0
; (1b)

where ρ0, r0, are a scaling density and a scaling
radius, respectively, related to a reference isopyc-
nic surface, ξ is a scaled distance, independent of
the direction along which radial coordinates are cal-
culated, and Ξ = ξ(r), is related to the boundary,
where r = R. Both cored and cuspy density profiles,
according to the explicit expression chosen for the
scaled density, f(ξ), are represented by Eq. (1). For
the cored profiles, a different normalization is used
here with respect to Caimmi (1993a), where ξ = r/R
and ρ0 is the central density.

The mass, the inertia tensor, and the potential
self-energy tensor are:

M = νmasM0 ; (2)

Ipq = δpqνinrMa2
p ; (3)

(Esel)pq = −
GM2

a1
νsel(Bsel)pq = −

GM2

a1
Spq ; (4)

Esel =

3
∑

i=1

(Esel)ii = −
GM2

a1
νselBsel = −

GM2

a1
S; (5)

(Bsel)pq = δpqεp2εp3Ap ; Bsel =

3
∑

s=1

εs2εs3As ; (6)

Spq = νsel(Bsel)pq ; S = νselBsel ; (7)

where δpq is the Kronecker symbol; G is the constant
of gravitation; νmas, νinr, νsel, are profile factors i.e.
depend only on the density profile via the scaled ra-
dius, Ξ; a1, a2, a3, are semiaxes; εpq = ap/aq are axis
ratios; A1, A2, A3, are shape factors i.e. depend only
on the axis ratios; and M0 is the mass of a homoge-
neous ellipsoid with same density and boundary as
the reference isopycnic surface:

M0 =
4π

3
ρ0a01a02a03 ; (8)

where a01, a02, a03, are the semiaxes of the ellip-
soid bounded by the reference isopycnic surface. The
combination of Eqs. (1b), (2), and (8) yields:

ρ

ρ0
=

νmas

Ξ3
; (9)

where ρ = 3M/(4πa1a2a3) is the mean density of the
ellipsoid.

The limiting case of homogeneous configura-
tions reads:

f(ξ) = 1 , 0 ≤ ξ ≤ Ξ ; (10a)

νmas = Ξ3 ; νinr =
1

5
; νsel =

3

10
; (10b)

for further details, see CM03, CM05.

2.2 Systematic rotation

In dealing with angular momentum and rota-
tional energy, the preservation of (triaxial) ellipsoidal
shape imposes severe constraints on the rotational
velocity field. In the special case of homeoidally stri-
ated Jacobi ellipsoids, the systematic velocity field is
defined by the equation (CM05):

vrot(r, θ, φ)

vrot(R, θ, φ)
=

vrot(a
′
1, π/2, 0)

vrot(a1, π/2, 0)
; (11)

or equivalently, the angular (with respect to x3 axis)
velocity field is defined by the equation:

Ω(r, θ, φ)

Ω(R, θ, φ)
=

Ω(a′
1, π/2, 0)

Ω(a1, π/2, 0)
; (12)

4A more extended version is available at the arxiv electronic site, as astro-ph/0505306.
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where (r, θ, φ), (R, θ, φ), represent a point on a
generic isopycnic surface and on the boundary,
respectively, along a fixed radial direction, and
(a′

1, π/2, 0), (a1, π/2, 0), represent the end of the cor-
responding major equatorial semiaxis.

It is worth noticing that the following special
cases are described by Eqs. (11) or (12): (a) rigid ro-
tation; (b) constant rotation velocity everywhere; (c)
rigid rotation of isopycnic surfaces and constant ro-
tation velocity on the equatorial plane. To maintain
ellipsoidal shapes, differential rotation [e.g. cases
(b) and (c) above] must necessarily be restricted to
axysimmetric figures i.e. spheroidal configurations.
In the limiting situation of homogeneous, rigidly ro-
tating, dynamical (or hydrostatic) equilibrium con-
figurations, homeoidally striated Jacobi ellipsoids re-
duce to classical Jacobi ellipsoids (CM05).

The angular-momentum vector and the
rotational-energy tensor are:

Js = δs3ηanmνanmMap(1 + ε2qp)(vrot)p ;

p 6= q 6= s ; (13)

(Erot)pq = δpq(1 − δp3)ηrotνrotM [(vrot)p]
2

; (14)

and the related module and trace, respectively, read:

J = ηanmνanmM(1 + ε221)a1(vrot)1 ; (15)

Erot = ηrotνrotM(1 + ε221) [(vrot)1]
2

; (16)

where ηanm, ηrot, are shape factors, νamn, νrot, are
profile factors, (vrot)p is the rotational velocity at the
end of the semiaxis, ap, p = 1, 2, and the rotation
axis has been chosen to be x3. For further details,
see CM03, CM05.

The combination of Eqs. (15) and (16) yields:

(Erot)pq =
J2

Ma2
1

νram(Bram)pq =
J2

Ma2
1

Rpq ; (17a)

νram =
νrot

ν2
anm

; (17b)

(Bram)pq = δpq(1 − δp3)
ηrot

η2
anm

ε2p1

(1 + ε221)
2

; (17c)

Rpq = νram(Bram)pq ; (17d)

which makes an alternative expression of the
rotation-energy tensor, and:

Erot =
J2

Ma2
1

νramBram =
J2

Ma2
1

R ; (18a)

Bram =
ηrot

η2
anm

1

1 + ε221
; (18b)

R = νramBram ; (18c)

which makes an alternative expression of the rotation
energy.

The limiting situations outlined above, read:

νanm = νrot = νinr =
1

5
; νram = ν−1

inr = 5 ; (19)

for homogeneous configurations in rigid rotation, ac-
cording to case (a);

νanm =
1

4
; νrot =

1

3
; νram =

16

3
; (20)

for homogeneous configurations with constant veloc-
ity on the equatorial plane, according to cases (b)
and (c);

ηanm = 1 ; ηrot =
1

2
; (21)

for rigidly rotating isopycnic surfaces, cases (a) and
(c);

ηanm =
3π

8
; ηrot =

3

4
; (22)

for constant velocity everywhere, case (b). Further
details can be found in CM03, CM05.

2.3 Virial equilibrium configurations

Let us define virial equilibrium as character-
ized by the validity of the virial theorem, and re-
laxed and unrelaxed configurations as systems where
virial equilibrium does and does not coincide, respec-
tively, with dynamical (or hydrostatic) equilibrium
(CM05).

With regard to unrelaxed configurations, the
generalized tensor virial equations read (CM05):

(Esel)pq + 2(Erot)pq + 2ζpqEpec = 0 ; (23)

ζpq =
(Ẽpec)pq

Epec
; p = 1, 2, 3 ; q = 1, 2, 3 ; (24)

3
∑

p=1

ζpp =
Ẽpec

Epec
= ζ ; 0 ≤ ζpp ≤ ζ ; (25)

ζpq = 0 ; p 6= q ; (26)

where ζpq is the generalized anisotropy tensor, Epec

is the residual energy, and (Ẽpec)pq = ζpqEpec is the
effective residual-energy tensor i.e. the right amount
needed for the configuration of interest to be re-
laxed. The diagonal components of the generalized
anisotropy tensor, ζpp, may be conceived as gener-
alized anisotropy parameters. The related trace, ζ,
may be conceived as a virial index, where ζ = 1 corre-
sponds to null virial excess, 2∆Epec = 2(Ẽpec−Epec),
which does not necessarily imply a relaxed configu-
ration5, ζ > 1 to positive virial excess, and ζ < 1 to
negative virial excess.

The substitution of Eqs. (4)-(7) and (17)-(18)
into the virial Eq. (23), and the particularization to

5For instance, a homogeneous sphere undergoing coherent oscillations exhibits ζ > 1 at expansion turnover and ζ < 1 at
contraction turnover. Then there necessarily exists a configuration where ζ = 1 which, on the other hand, is unrelaxed.
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the rotation axis, p = 3, allows the following expres-
sion of the peculiar energy (CM05):

Epec =
1

2

GM2

a1

S33

ζ33
; (27)

accordingly, the remaining virial equations read
(CM05):

(ζ33Sqq − ζqqS33) − 2hζ33Rqq = 0 ; q = 1, 2 ; (28)

h =
J2

GM3a1
; (29)

where h may be conceived as a rotation parameter.
It is apparent that Eq. (28) admits real solutions pro-
vided the following inequalities hold:

ζqq

ζ33
≤

Sqq

S33
; q = 1, 2 ; (30)

which is the natural extension of its counterpart re-
lated to axisymmetric, relaxed configurations (Wie-
gandt 1982a,b).

2.4 Rotation and anisotropy parameters

To get a more evident connection with the
centrifugal potential on the boundary, expressed in
Cartesian coordinates, let us define the rotation pa-
rameter (CM05):

υ =
Ω2

2πGρ̄
; (31)

where Ω = Ω(a1, 0, 0) is the angular velocity at the
end of the major equatorial semiaxis, denoted as a1,
and ρ̄ is the mean density of the ellipsoid:

ρ̄ =
3

4π

M

a1a2a3
; (32)

the above definition of the rotation parameter, υ,
makes a generalization of some special cases men-
tioned in the literature (e.g. Jeans 1929, Chap. IX,
§232; Chandrasekhar and Leboviz 1962).

The combination of Eqs. (15), (29), (31), and
(32) yields:

h =
3

2
η2
anmν2

anm

(1 + ε221)
2

ε21ε31
υ ; (33)

which links the rotation parameters, h and υ. An
explicit expression of the rotation parameter, h, may
directly be obtained from Eq. (28), as:

h =
1

2

ζ33Sqq − ζqqS33

ζ33Rqq
; q = 1, 2 ; (34)

and the substitution of Eqs. (34) into (33), using (17)
and (18), allows the explicit expression of the rota-
tion parameter, υ, as:

υ =
1

3

ε21ε31
(1 + ε221)

2

1

η2
amnν2

amn

ζ33Sqq − ζqqS33

ζ33Rqq
;

q = 1, 2 ; (35)

which, in the special case of rigidly rotating, homo-
geneous configurations with isotropic peculiar veloc-
ity distribution, reduces to a known relation for Ja-
cobi ellipsoids and, with the additional demand of
axial symmetry, to a known relation for MacLau-
rin spheroids (e.g. Jeans 1929, Chap.VIII, §§189-
193, Chandrasekhar 1969, Chap. 5, §32, Chap. 6, §39,
Caimmi 1996a).

An explicit expression of anisotropy parame-
ter ratio, can be obtained via Eq. (34). The result is
(CM05):

ζqq

ζ33
=

Sqq

S33

[

1 − 2h
Rqq

Sqq

]

; q = 1, 2 ; (36)

ζ11

ζ22
=

S11 − 2hR11

S22 − 2hR22
; (37)

and the combination of Eqs. (25) and (36) yields:

ζ33

ζ
=

S33

S − 2hR
; (38)

which provides an alternative expression to Eqs. (34)
and (35), as (C06):

h =
1

2

ζ33S − ζS33

ζ33R
; (39)

υ =
1

3

ε21ε31
(1 + ε221)

2

1

η2
amnν2

amn

ζ33S − ζS33

ζ33R
; (40)

that are equivalent to Eq. (28), and then admit real
solutions provided inequality (30) is satisfied.

Finally, Eq. (28) may be combined as:

R11

R22
=

ζ33S11 − ζ11S33

ζ33S22 − ζ22S33
; (41)

where it can be seen that Eqs. (37) and (41) are
changed one into the other, by replacing the terms,
S33ζqq/ζ33, with the terms, 2hRqq , and vice versa.

In the special case of axisymmetric configu-
rations, the shape factors related to equatorial axes
coincide, A2 = A1, as ε21 = 1 (e.g. CM05). Then
S11 = S22 owing to Eqs. (6), (7), and R11 = R22 ow-
ing to Eqs. (17), which necessarily imply ζ11 = ζ22,
owing to Eq. (41).

In the general case of triaxial configurations,
the contrary holds, A2 6= A1, as ε21 6= 1, then

6Throughout this paper, ”along the equatorial plane” has to be understood as ”along any direction parallel to the equatorial
plane”.
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S11 6= S22 and R11 6= R22. Accordingly, the equal-
ity, ζ11 = ζ22, via Eq. (37), implies the validity of the
relation:

h =
1

2

S11 − S22

R11 −R22
; (42)

if otherwise, the residual velocity distribution along
the equatorial plane6 is anisotropic i.e. ζ11 6= ζ22.
The related degeneracy can be removed using an ad-
ditional condition, as it will be shown in the next
Section.

3. A UNIFIED THEORY OF SYSTEMATIC
AND RANDOM MOTIONS

3.1 Imaginary rotation

A unified theory of systematic and random
motions is allowed, taking into consideration imagi-
nary rotation, as discussed in earlier papers (Caimmi
1993b, C06), and an interested reader is addressed
therein for deeper insight. What is relevant for the
current investigation, shall be mentioned and further
developed here.

It has been shown in Section 2 that Eq. (28),
or equivalently one among (34), (35), (39), (40), ad-
mits real solutions provided inequality (30) is satis-
fied. If otherwise, the rotation parameter - let it be
h or υ - has necessarily to be negative, which im-
plies, via Eq. (29) or (31), an imaginary angular ve-
locity, iΩ, where i is the imaginary unit. Accordingly,
the centrifugal potential takes the general expression
(C06):

T ∓(x1, x2, x3) = ∓
1

2
[Ω(x1, x2, x3)]

2w2 ; (43a)

w2 = x2
1 + x2

2 ; (43b)

where the minus and the plus correspond to imagi-
nary and real rotation, respectively. The centrifugal
force related to real rotation, ∂T +/∂w, has opposite
sign with respect to the gravitational force, ∂V/∂w.
On the other hand, the centrifugal force related to
imaginary rotation, ∂T −/∂w, has equal sign with
respect to the gravitational force, ∂V/∂w. Then the
net effect of real rotation is flattening, while the net
effect of imaginary rotation is elongation, with re-
spect to the rotation axis (Caimmi 1996b).

To get further insight, let us particularize
Eq. (28) to the special case of null rotation (h = 0).
The result is:

ζqq

ζ33
=

Sqq

S33
; h = 0 ; q = 1, 2 ; (44)

where the right-hand side, via Eqs. (6) and (7), de-
pends on the axis ratios only. It can be seen (Ap-
pendix A) that Sqq/S33 ≥ 1 for oblate-like config-
urations (a1 ≥ a2 ≥ a3), and Sqq/S33 ≤ 1 for

prolate-like configurations (a2 ≤ a1 ≤ a3), which im-
plies ζqq/ζ33 ≥ 1 for oblate-like configurations, and
ζqq/ζ33 ≤ 1 for prolate-like configurations. Accord-
ingly, the net effect of positive or negative residual
motion excess along the equatorial plane is flattening
or elongation, respectively. In what follows, it shall
be considered that residual motion excess is related
to the equatorial plane.

3.2 Residual motion excess and rotation

With regard to the rotation parameter, υ, it is
convenient to use the more compact notation7 (C06):

υN =
3ηrotνrot

νsel
υ ; (45)

and the substitution of Eqs. (6), (7), (17), (18), into
(35) and (40), yields the equivalent expressions:

υN = Aq −
ζqq

ζ33
ε23qA3 ; q = 1, 2 ; (46)

υN =
1

1 + ε221

[

A1 + ε221A2 +
ζ33 − ζ

ζ33
ε231A3

]

; (47)

which shows that, for homeoidally striated Jacobi
ellipsoids, the normalized rotation parameter, υN,
depends on the axis ratios, ε21, ε31, and a single
anisotropy parameter, ζ̃33 = ζ33/ζ. In the special
case of homogeneous, rigidly rotating configurations,
owing to Eqs. (10b), (19), and (21), Eq. (45) reduces
to: υN = υ.

In the limit of isotropic residual velocity dis-
tribution, ζ11 = ζ22 = ζ33 = ζ/3, Eqs. (46) and (47)
take the simpler form (C06):

(υN)iso = Aq − ε23qA3 ; q = 1, 2 ; (48)

(υN)iso =
1

1 + ε221

[

A1 + ε221A2 − 2ε231A3

]

; (49)

where the index, ”iso”, means isotropic residual ve-
locity distribution.

Accordingly, Eqs. (46) and (47) may be ex-
pressed as (C06):

υN = (υN)iso − (υN)ani ; (50)

(υN)ani =

(

ζqq

ζ33
− 1

)

ε23qA3 ; (51)

(υN)ani =

(

ζ

ζ33
− 3

)

ε231A3

1 + ε221
; (52)

where (υN)ani ≥ 0 for oblate-like configurations,
ζqq/ζ33 ≥ 1; (υN)ani ≤ 0 for prolate-like configu-
rations, ζqq/ζ33 ≤ 1; and the index, ani, means con-
tribution from residual motion excess. Accordingly,

7The factor, 3, does not appear in CM05: υN = 3(υN)CM05 . The current normalization is more convenient in dealing with a
general theory (Caimmi, in preparation).
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positive residual motion excess is related to real ro-
tation. On the contrary, negative residual motion
excess is related to imaginary rotation.

Let us rewrite Eq. (50) as:

(υN)iso = υN + (υN)ani ; (53)

which, owing to Eqs. (31) and (45), is equivalent to:

Ω2
iso = Ω2 ∓ Ω2

ani ; (54)

where the plus corresponds to real rotation,
(υN)ani ≥ 0, and the minus to imaginary rotation,
(υN)ani ≤ 0. Then the effect of residual motion ex-
cess on the shape of the system, is virtually indis-
tinguishible from the effect of additional systematic
rotation, with similar (rotation) velocity distribution
as the pre-existing one. The related, explicit expres-
sion, according to Eqs. (12), (31), and (52), is (C06):

Ωani(r, θ)

Ωani(R, θ)
=

Ωani(a
′
1, 0)

Ωani(a1, 0)
=

Ω(a′
1, 0)

Ω(a1, 0)
=

Ω(r, θ)

Ω(R, θ)
;(55)

Ω2
ani = Ω2

ani(a1) = ∓(υN)ani
νsel

3ηrotνrot
2πGρ ; (56)

where the double sign ensures a non negative value
on the right hand-side member of Eq. (56). Accord-
ingly, a homeoidally striated Jacobi ellipsoid with as-
signed systematic rotation and residual velocity dis-
tribution, with regard to the shape, is virtually indis-
tinguishable from an adjoint configuration of equal
mass and axes, systematic rotation velocity distri-
bution deduced from Eqs. (12), (55) and (56), and
isotropic residual velocity distribution.

Owing to Eqs. (50), (51), and (52), Eqs. (48)
and (49) are equivalent to (46) and (47), respectively.
On the other hand, Eqs. (48) and (49) are valid for
classical Jacobi ellipsoids with rotation parameter,
υ = (υN)iso.

Accordingly, a homeoidally striated Jacobi el-
lipsoid (in general, an unrelaxed configuration) with
assigned systematic rotation and residual velocity
distribution, with regard to the shape, is virtually
indistinguishable from an adjoint, classical Jacobi el-
lipsoid (a relaxed configuration) of equal mass and
axes, and rotation parameter equal to the normalized
rotation parameter of the original configuration.

3.3 Axis ratios and anisotropy parameters

The combination of the alternative expres-
sions of the rotation parameter, (υN)iso, expressed
by Eqs. (48), yields:

ε221(A2 − A1) = (1 − ε221)ε
2
31A3 ; (57)

which, for axisymmetric configurations, reduces to
an indeterminate form, 0 = 0.

The combination of the alternative expres-
sions of the rotation parameter, (υN)ani, expressed
by Eqs. (51), yields:

ζ33 − ζ22 = ε221(ζ33 − ζ11) ; (58)

which, for isotropic residual velocity distributions,
reduces to an indeterminate form, 0 = 0. In addi-
tion, axisymmetric configurations (ε21 = 1) neces-
sarily imply isotropic residual velocity distributions
along the equatorial plane, ζ11 = ζ22.

The combination of Eqs. (25) and (58) yields:

ζ11 =
ζ − (2 − ε221)ζ33

1 + ε221
; (59a)

ζ22 =
ε221ζ + (1 − 2ε221)ζ33

1 + ε221
; (59b)

which, for axisymmetric configurations (ε21 = 1) re-
duces to ζ11 = ζ22 = (ζ − ζ33)/2, and the special
case, ζ33 = ζ/3, reads ζ11 = ζ22 = ζ/3.

The condition, ζ11 ≥ 0, related to Eqs. (24),
necessarily implies 0 ≤ ζ33/ζ ≤ 1/2 for ε21 = 0.
If otherwise, 1/2 < ζ33/ζ ≤ 1, sequences of virial
equilibrium configurations cannot attain the oblong
shape, ε21 = ε31 = 0, but must stop earlier, where
the equivalent relations:

ε221 =
2ζ33 − ζ

ζ33
; ζ11 = 0 ; (60)

are satisfied.
Accordingly, with regard to homeoidally stri-

ated Jacobi ellipsoids, the anisotropy parameters
along the equatorial plane, ζ11 and ζ22, cannot
be arbitrarily assigned, but depend on the equato-
rial axis ratio, ε21, conform to Eqs. (59). On the
other hand, the further knowledge of the meridional
axis ratio, ε31, and the rotation parameter, υN, al-
lows the determination of the rotation parameter,
(υN)ani, via Eqs. (48), (49), (50), and then the ra-
tios, ζqq/ζ33, ζ33/ζ, via Eqs. (51), (52), respectively,
or the anisotropy parameter along the rotation axis,
ζ33, provided the virial index, ζ, defined by Eq. (25),
is assigned.

In conclusion, with regard to homeoidally stri-
ated Jacobi ellipsoids defined by assigned axis ratios,
ε31, ε21, rotation parameter, υN, and virial index, ζ,
the anisotropy parameters, ζ11, ζ22, ζ33, cannot ar-
bitrarily be fixed, but must be determined as shown
above.

3.4 Centrifugal support along the major equa-
torial axis

The calculation of the gravitational force, in-
duced by homeoidally striated Jacobi ellipsoids, in-
volves numerical integrations (e.g. Chandrasekhar
1969, Chap. 3, § 20) and is outside the scope of the
current paper. With regard to an assigned isopycnic
surface internal to, or coinciding with, the bound-
ary, the gravitational force, FG, induced at the end
of the related major equatorial semiaxis, a′

1, satisfies
the inequality:

|FG(a′
1, 0, 0)|sph ≤ |FG(a′

1, 0, 0)| ≤ |FG(a′
1, 0, 0)|foc ;

19



R. CAIMMI

where the left-hand side is related to spherical isopy-
cnics with unchanged major equatorial axes, and the
right-hand side to confocal isopycnic surfaces from
the one under consideration to the centre. Ow-
ing to the Newton’s and MacLaurin’s theorem (e.g.
Caimmi 2003), the following relations hold:

FG(a′
1, 0, 0) = −2πGρ̄xxx(a

′
1)(A1)xxxa

′
1 ; (61)

where ρ̄(a′
1) is the mean density within the isopycnic

surface, and xxx = sph, foc, for the striated sphere
and the focaloidally striated ellipsoid surrounded by
the homeoidally striated corona, respectively.

The balance between gravitational and cen-
trifugal force at the end of the major equatorial axis
of the isopycnic surface under discussion, reads:

−2πGρ̄xxx(a
′
1)(A1)xxxa

′
1 + Ω2

iso(a
′
1)a

′
1 = 0 ; (62)

where the angular velocity, Ωiso, takes into account
both systematic rotation and residual motion excess,
according to Eq. (54). On the other hand, the gen-
eralization of Eq. (31) to a generic isopycnic surface
within the boundary, reads:

υ(a′
1) =

Ω2(a′
1)

2πGρ̄xxx(a′
1)

; (63)

and the combination of Eqs. (45), (53), (54), (62),
(63), yields:

{[υiso(a
′
1)]eq}xxx =

Ω2
iso(a

′
1)

2πGρ̄xxx(a′
1)

= (A1)xxx ; (64)

where the index, eq, denotes the rotation parameter,
υiso(a

′
1), related to centrifugal support at the end of

major equatorial axis of the isopycnic surface under
consideration. The above results allow the validity
of the relation:

{[υiso(a
′
1)]eq}cof ≤ [υiso(a

′
1)]eq ≤ {[υiso(a

′
1)]eq}sph ;

(65)
where [υiso(a

′
1)]eq is the critical value related to

the homeoidally striated Jacobi ellipsoid, with re-
gard to an assigned isopycnic surface internal to,
or coinciding with, the boundary. Then υiso(a

′
1) ≥

{[υiso(a
′
1)]eq}cof and υiso(a

′
1) ≤ {[υiso(a

′
1)]eq}sph

make a sufficient and a necessary condition, respec-
tively, for the occurrence of centrifugal support at
the end of major equatorial axis in the case under
consideration.

Owing to the Newton’s and MacLaurin’s the-
orem, the condition of centrifugal support, Eq. (64),
for focaloidally striated ellipsoids surrounded by
homeoidally striated coronae, coincides with its
counterpart related to homogeneous ellipsoids with
equal mean density, axis ratios, and velocity field.
On the other hand, the rotation parameter, υiso(a

′
1),

in the special case of focaloidally striated ellipsoids,
is also expressed by Eq. (64), particularized to clas-
sical Jacobi ellipsoids. A comparison with the last
part of Eq. (64) shows that centrifugal support in
focaloidally striated ellipsoids occurs only for flat

configurations, ε31 = 0. Accordingly, Eq. (65) re-
duces to:

0 ≤ [υiso(a
′
1)]eq ≤

2

3
; (66)

due to Eq. (64) and (A1)sph = 2/3 (e.g. CM03).
With regard to rigid rotation, it is a well

known result that the occurrence of centrifugal sup-
port, at the end of the major equatorial axis, de-
pends on the steepness of the density profile (e.g.
Jeans 1929, Chap. IX, §§ 230-240). More precisely, a
steeper density profile implies an earlier centrifugal
support and vice versa, unless the bifurcation point
from ellipsoidal to pear-shaped configurations is at-
tained, which occurs for nearly homogeneous matter
distributions. A similar trend is expected to hold
for any velocity profile of the kind considered in the
current paper.

The combination of Eq. (65) with its counter-
part related to the boundary, yields:

υiso(a
′
1) = υiso

M

M(a′
1)

(

a′
1

a1

)3
Ω2(a′

1)

Ω2(a1)
; (67)

a further restriction to mass distributions obeying
the following equation:

M(a′
1)

M
=

(

a′
1

a1

)k

; 0 ≤ k ≤ 3 ; (68)

where k = 3, 1, 0, represent homogeneous, isother-
mal, and Roche-like mass distributions, make
Eq. (67) reduce to:

υiso(a
′
1) = υiso

(

a′
1

a1

)3−k
Ω2(a′

1)

Ω2(a1)
; (69)

where the last factor equals unity for rigid rotation
and the ratio, (a1/a′

1)
2, for constant velocity along

the major equatorial axis. Accordingly, centrifugal
support at the end of major equatorial axis is first
attained on the boundary in the former alternative,
υiso(a

′
1) ≤ υiso(a1).
In the latter alternative, Eq. (69) reduces to:

υiso(a
′
1) = υiso

(

a′
1

a1

)1−k

; (70)

which, for sufficiently steep density profiles, 0 ≤ k ≤
1, shows a similar trend with respect to the former
alternative. On the other hand, centrifugal support
is first attained everywhere along the major equa-
torial axis for isothermal mass distributions, k = 1,
and at the centre for sufficiently mild density profiles,
1 ≤ k ≤ 3, which implies υiso(a

′
1) ≥ υiso(a1).

The combination of Eqs. (45) and (64) yields:

{[(υN)iso(a
′
1)]eq}xxx =

3ηrotνrot

νsel
(A1)xxx ; (71)

and Eq. (66) reads:

0 ≤ [(υN)iso(a
′
1)]eq ≤

2ηrotνrot

νsel
; (72)

in terms of the normalized rotation parameter, υN.
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3.5 Bifurcation points

Given a homeoidally striated ellipsoid, it has
been shown above (see also C06) that the adjoint
configuration, characterized by isotropic peculiar ve-
locity distribution and normalized rotation parame-
ter, (υN)iso, exhibits same shape as a classical Jacobi
ellipsoid of equal mass and axes, in real or imagi-
nary rotation, where υ = (υN)iso. Accordingly, the
bifurcation point from axisymmetric to triaxial con-
figurations is related to an axis ratio, ε31, which is in-
dependent of the amount of systematic rotation and
residual motion excess, conform to Eq. (53). To gain
more insight, let us equalize the alternative expres-
sions of Eq. (46). The result is:

A1 −
ζ11

ζ33
ε231A3 = A2 −

ζ22

ζ33
ε232A3 ; (73)

and the combination of Eqs. (59) and (73) yields:

A2 − A1

1 − ε221
=

ε231
ε221

A3 ; (74)

then the bifurcation points occur at a configuration,
where the axis ratio, ε31, is the solution of the tran-
scendental equation (Caimmi 1996a):

lim
ε21→1

ε221
A2 − A1

1 − ε221
= ε231A3 ; (75)

where Eqs. (74) and (75) coincide with their counter-
parts related to isotropic residual velocity distribu-
tions (Caimmi 1996a,b).

The contradiction with earlier results (Wie-
gandt 1982a,b, CM05) is explained in the following
way. Let us suppose that the generalized anisotropy
parameters, ζ11, ζ22, ζ33, can be arbitrarily fixed re-
gardless from Eqs. (59), and assume ζ11 = ζ22 also for
triaxial configurations. Accordingly, Eq. (73) reads:

A2 − A1

1 − ε221
=

ζ11

ζ33

ε231
ε221

A3 ; (76)

and the bifurcation points occur at a configuration
where the axis ratio, ε31, is the solution of the tran-
scendental equation:

lim
ε21→1

ε221
A2 − A1

1 − ε221
=

ζ11

ζ33
ε231A3 ; (77)

which coincides with Wiegandt (1982b) criterion for
bifurcation, with regard to homeoidally striated Ja-
cobi ellipsoids in rigid rotation. For a formal demon-
stration, see Appendix B. Then Wiegandt’s criterion
for bifurcation, expressed by Eq. (77), is in contra-
diction with Eqs. (59), contrary to the current one,
expressed by Eq. (75).

4. TRANSITIONS FROM AND
TOWARDS HOMEOIDALLY
STRIATED JACOBI ELLIPSOIDS

In a classical paper, Thuan and Gott (1975)
modelled virialized elliptical galaxies and related
progenitor density perturbations at turnaround as
MacLaurin spheroids and rigidly rotating homoge-
neous spheres, respectively, and found a relation be-
tween the initial ratio of rotation to potential en-
ergy and the final shape. Surprisingly, the model
succeeded in explaining why elliptical galaxies more
flattened than E7 cannot exist.

In a recent attempt (CM05) the above men-
tioned procedure has been generalized passing from
MacLaurin spheroids to homeoidally striated Jacobi
ellipsoids, and the interested reader is addressed
therein for deeper insight. What is relevant for the
current investigation, shall be mentioned and further
developed here.

Let the initial and the final configuration be
homeoidally striated Jacobi ellipsoids, and let the
former be denoted by a prime. The identity:

Erot =
Erot

E′
rot

E′
rot

−E′
sel

E′
sel

Esel
(−Esel) ;

owing to Eqs. (5) and (18a), may be cast under the
equivalent form (CM05):

a′
1

a1
=

β3
M

β2
J

S

S ′

R′

R

Erot

E ′
rot

; (78a)

βJ =
J

J ′
; βM =

M

M ′
Erot = −

Erot

Esel
; (78b)

involving dimensionless quantities only.
On the other hand, the identity:

E = Esel + Erot + Eres =
E

E′
E′

=
E

E′
(E′

sel + E′
rot + E′

pec + E′
osc) ;

by use of Eqs. (23), and (26), may be cast under the
equivalent form (CM05):

Esel

E′
sel

− Erot
Esel

E′
sel

−
1

2ζ

Esel

E′
sel

+
1

ζ

Esel

E′
sel

Erot

= βE(1 − E ′
rot − E ′

pec − E ′
osc) ; (79a)

βE =
E

E′
; Erot = −

Erot

Esel
; Epec = −

Epec

Esel
;

Eosc = −
Eosc

Esel
; (79b)

ζ = −
Esel + 2Erot

2(Eosc + Epec)
; (79c)

where Eosc, Epec, represent the kinetic energy of sys-
tematic radial and non systematic motions, respec-
tively.
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The combination of Eqs. (5), (18a), and (79)
yields after some algebra:

β2
M

S

S ′

a′
1

a1

[

2ζ − 1

2ζ
−

ζ − 1

ζ
Erot

]

−βE(1 − E ′
rot − E ′

pec − E ′
osc) = 0 ; (80)

involving dimensionless quantities only.
The substitution of Eq. (78a) into (80) pro-

duces a second-degree equation in E ′
rot, as (CM05):

(E ′
rot)

2
− 2bE ′

rot + c = 0 ; (81a)

b =
1

2

(

1 − E ′
osc − E ′

pec

)

; (81b)

c =
β5

M

β2
JβE

(

S

S ′

)2
R′

R
Erot

[

2ζ − 1

2ζ
−

ζ − 1

ζ
Erot

]

(81c)

the (reduced) discriminant of this equation is
(CM05):

∆ = b2 −
β5

M

β2
JβE

(

S

S ′

)2
R′

R
Erot

×

[

2ζ − 1

2ζ
−

ζ − 1

ζ
Erot

]

; (82)

with regard to a transition from an initial to a final
configuration, where all the parameters which appear
in Eq. (82) are specified, except the axis ratios, ε21

and ε31. The condition, ∆ = 0, via Eq. (82), repre-
sents a curve in the (Oε21ε31) plane. The transition
is forbidden for all values of the axis ratios, which
make a negative discriminant, and then imaginary
solutions.

The solutions of Eq. (81a) are:

E ′
rot = b ∓

{

b2 −
β5

M

β2
JβE

(

S

S ′

)2
R′

R
Erot

×

[

2ζ − 1

2ζ
−

ζ − 1

ζ
Erot

]}1/2

; (83)

and the combination of Eqs. (78a) and (83) yields:

a1

a′
1

=
β2

J

β3
M

S ′

S

R

R′

1

Erot

{

b ∓

[

b2 −
β5

M

β2
JβE

(

S

S ′

)2
R′

R

×Erot

(

2ζ − 1

2ζ
−

ζ − 1

ζ
Erot

)]1/2
}

; (84)

where the rotation parameter, E ′
rot, and the axis ra-

tio, a1/a′
1, are left unchanged for different departures

from mass, angular momentum, and energy conser-
vation, provided the ratios:

βE =
β5

M

β2
JβE

; βa =
β2

J

β3
M

; (85)

do not vary.

5. THE ENDING POINT
OF THE SEQUENCE OF
ELLIPTICAL GALAXIES

The results of the current paper allow an ex-
tension and a generalization of the classical physical
interpretation of the Hubble (1926) sequence (e.g.
Jeans 1929, Chap.XIII, §§ 298-303) to anisotropic
peculiar velocity distributions. Owing to the results
of Section 3, it will suffice to restrict to solid-body
rotating configurations with isotropic peculiar veloc-
ity distributions, but with imaginary rotation also
taken into consideration in order to include prolate
configurations.

5.1 Classification of galaxies

It is worth recalling that, before establishing
their similarity to the Milky Way, galaxies were re-
ferred to as ”great nebulae” or ”nebulae”. In the
words of Jeans (1929, Chap.XIII, § 298):

”Hubble finds that it is not possible to place
all observed nebulae in one continuous sequence; their
proper representation demands a Y-shaped diagram.
(...)

The lower half of the Y is formed by nebulae
of approximately elliptical or circular shape. These are
subdivided into eight classes, designated E0, E1, ...,
E7, the numerical index being the integer nearest to
10[(a − b)/a], where a and b are the greatest and the
least diameter of the nebulae as projected on the sky.
Thus E0 consists of nearly circular nebuale (b > 0.95a),
while E7 consists of nebulae for which b is about 0.3a,
this being the greatest inequality of axes observed in
the ”elliptical” nebulae. (...)

The upper half of the Y-shaped diagram consists
of two distinct branches, one of which is found to con-
tain a far larger number of nebulae than in the other.
The principal branch contains the normal ”spiral” neb-
ulae, which are characterized by a circular nucleus from
which emerge two (or occasionally more) arms of ap-
proximately spiral shape. (...) These nebulae are sub-
divided into three classes, designated Sa, Sb, Sc, class
Sa fitting almost continuously on to class E7.

The minor branch contains a special class of spi-
rals characterized by the circumstance that the spiral
arms appear to emerge from the two ends of a straight
bar-shaped or spindle-shaped mass. (...)

About 97 per cent of known extra-galactic neb-
ulae are found to fit into this Y-shaped classification.
The remaining 3 per cent, are of irregular shape, and
refuse to fit into the classification at all. (...) The ir-
regular nebulae are distinguished by a complete absence
of symmetry of figure and also by the absence of any
central nucleus. (...)

Apart from the irregular nebulae, Hubble states
that, out of more than a thousand nebulae examined,
less than a dozen refused to fit into the Y-shaped dia-
gram at all, while in less than 10 per cent of the cases
was there any considerable doubt as to a proper posi-
tion of a nebula in the diagram. Clearly, the Y-shaped
diagram provides a highly satisfactory working classifi-
cation.”
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A more detailed description of the classifi-
cation scheme was performed later (Hubble 1936),
and subsequently modified as the collection of large-
scale plates of giant galaxies grew. Reproductions of
many of these plates were published posthumously
(Sandage 1961) and the introduction therein is gener-
ally regarded as the definitive exposition of the Hub-
ble scheme. At the junction of elliptical and spiral
galaxies, comes a class of galaxies (not mentioned
in early classifications) known as lenticulars. These
galaxies are designated as type S0 or type SB0 ac-
cording to whether or not they are barred. For fur-
ther details refer to e.g. Mihalas and Binney (1981,
Chap. 5, § 5.1).

The Hubble system, as conceived by Hub-
ble and further developed by Sandage, is defined
in terms of type-examples which are almost exclu-
sively giant galaxies (Mpg ≤ −19). However, the
most numerous type of galaxy in the Local Group
is either dwarf elliptical or dwarf spheroidal. The
surface brightness of a typical object belonging to
the former class is perfectly normal for an elliptical
galaxy, so that it differs from a giant elliptical galaxy
only in linear size and absolute magnitude. Dwarf
spheroidal galaxies, on the other hand, are very low
surface brightness objects. Thus it may safely be ex-
pected that dwarf galaxies are the most numerous
objects in the universe.

Hubble’s original scheme has generally been
considered satisfactory in regard to the ellipticals,
but it has been said that Hubble’s classification of
the spirals is incomplete and that his treatment of
irregular galaxies was quite inadequate. A few of the
more important attempts at reclassification of types
later than E (that is, to the right side of the ellipti-
cals in Hubble’s diagram) are described below.

Hubble’s two-dimensional scheme has been
made three-dimensional to include explicit reference
to rings and s-shaped objects, and, in addition, the
sequence has been extended to Sd-m and Im galax-
ies (de Vaucouleurs 1959). The Sd class overlaps
Hubble’s Sc class to some extent, but it also con-
tains more extreme objects which are classified as
Type I Irregulars (Irr I) in Hubble’s scheme. The
Sm and Im classes contain the remaining galaxies of
Hubble’s Irr I class.

An alternative scheme (the Yerkes system) re-
lies on a fundamental parameter designating the pop-
ulation group or concentration class of a galaxy (Mc-
Clure and van den Bergh 1968, Morgan et al. 1975).
This parameter runs from k to a such that, among
normal (in the sense of ”non active”) galaxies, those
of type k have the highest degree of central concen-
tration of their light, and those of type a have the
smallest central bulges and the most diffuse light dis-
tributions. Galaxies of type gk, g, fg, f , af , have
various intermediate light concentration.

Many features of both the classical Hubble
system and the Yerkes system are incorporated in a
new scheme (the DDO system), where the lenticular
galaxies are arranged parallel to the spirals rather
than before them, and a new class of galaxy, the
”anemic” spiral, is interposed between the spirals
and the lenticulars (van den Bergh 1960a,b, 1976).

The resulting figure is a trident diagram, and the re-
lated sequences of barred galaxies are described by a
separate trident.

For further details and references on the clas-
sical Hubble system, the de Vaucouleurs system, the
Yerkes system, and the DDO system, see e.g. Miha-
las and Binney (1981, Chap. 5, § 5.1). A deep analy-
sis on the physical parameters along the Hubble se-
quence may be found in e.g. Roberts and Haynes
(1994). The variation of gas content along the Hub-
ble sequence may be explored using a new catalogue
of normal (in the sense of ”isolated”) galaxies (Bet-
toni et al. 2003).

5.2 Physical interpretation

Soon after the early Hubble (1926) classifica-
tion of the ”great nebulae”, a physical interpretation
was provided by Jeans (1929, Chap. XIII, § 299):

”Obviously the proper physical interpretation of
the classification just described is of the utmost impor-
tance to cosmogony.

A first and most important clue is provided by
the fact that numbers of the great nebulae are known
to be in rotation. (...)

The symmetry of figure shown by nebulae of the
E and Sa types is precisely such as rotation might be
expected to produce, and this suggests an inquiry as to
how far the observed figures of the regular nebulae can
be explained as the figures assumed by masses rotating
under their own gravitation”.

The conclusion is (Jeans 1929, Chap. XIII,
§ 302):

”Remembering that rotation has actually been
observed in a number of nebulae, there seem to be
strong reasons for conjecturing that the observed con-
figuration of the nebulae may be explained in general
terms as the configurations of rotating masses”.

More specifically, two classes of models are
considered, where density profiles range between the
limiting cases (i) homogeneous configurations i.e.
classical MacLaurin spheroids and Jacobi ellipsoids,
and (ii) mass points surrounded by massless atmo-
spheres i.e. Roche systems. Rigidly rotating mass
distributions of the kind considered may attain any
shape between the extreme boundaries (a) spherical
i.e. nonrotating, and (b) centrifugal support at the
end of major equatorial axis. With respect to the
latter configuration, further rotation implies equato-
rial shedding or top major equatorial axis streaming
of matter, for axisymmetric and triaxial configura-
tions, respectively. For a fixed density profile, the se-
quence of rigidly rotating configurations starts from
the spherical shape and ends at the shape where cen-
trifugal support is first attained.

The above interpretation suffers from two
main drawbacks (Jeans 1929, Chap. XIII, §§ 300-
302). First, the most flattened elliptical configura-
tion (if related to a figure of revolution), should occur
when centrifugal support takes place at the bifurca-
tion point, from axisymmetric to triaxial shapes. On
the other hand, the above mentioned limiting con-
figuration is less flattened than E7. Second, triaxial
bodies of the kind considered cannot be figures of
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equilibrium if a great central condensation of mass is
present. On the other hand, it is the case for barred
spirals.

Owing to the results of Section 3, homeoidally
striated Jacobi ellipsoids with arbitrary peculiar ve-
locity field, and systematic motions reduced to rota-
tion around a fixed axis, may be related to classical
Jacobi ellipsoids extended to prolate configurations,
provided imaginary rotation is also taken into consid-
eration. Then the occurrence of anisotropic peculiar
velocity distributions does not affect the physical in-
terpretation under discussion, and the questions to
be clarified remain the above mentioned two.

Accordingly, the second sentence quoted from
Jeans at the beginning of the current Section, could
be generalized as: ”A first and most important clue is
provided by the fact that galaxies are known to be in
(real or imaginary) rotation”. In particular (i) spiral
galaxies apparently rotate; (ii) faint (MB > −20.5)
elliptical galaxies (Davies et al. 1983), SA bulges
(Kormendy and Illingworth 1982), SB bulges (Ko-
rmendy 1982), and a few bright (MB < −20.5) el-
liptical galaxies (Illingworth 1981) appear to be sup-
ported by systematic rotation; (iii) the majority of
bright elliptical galaxies (Illingworth 1981) appear
to be supported by anisotropic peculiar velocity dis-
tribution; and (iv) elliptical-like galaxies with dust
lanes (Sharples et al. 1983), similarly to bright el-
lipticals, appear to be supported by either system-
atic rotation or anisotropic peculiar velocity distribu-
tion. For a more detailed discussion refer to Caimmi
(1983).

In absence of a unified theory of systematic
and random motions, with regard to rotation around
a fixed axis, centrifugal support and anisotropic pres-
sure must necessarily be thought of as independent
contributions to the shape of the system (e.g. Bin-
ney 1976, 1978, 1980). On the contrary, the cur-
rent attempt comes back to Jean’s conception, that
the shape of galaxies is determined by rotation, con-
ceived as real (related to oblate configurations) or
imaginary (related to prolate configurations). To
this aim, our attention shall be restricted to the Hub-
ble classification for the following reasons. First, it is
defined in terms of almost exclusively bright galaxies,
where both centrifugal support and anisotropic pe-
culiar velocity distribution have been observed. Sec-
ond, it has generally been considered satisfactory in
regard to ellipticals.

The detection of highly flattened ellipticals is
expected to be rare, as they must necessarily be
viewed edge-on. In addition, the advent of more re-
fined instruments and techniques has led to different
classifications. For instance, NGC 3115 is quoted
as E7 in Jeans (1929, Chap. XIII, §298, Plate IX),
E7/S0 in Sandage’s Hubble Atlas of Galaxies (e.g.
Mihalas and Binney 1981, Chap. 5, § 5.1, Fig. 5.3),
and S0 in Larsen et al. (1983); NGC 3377 is quoted

as E6 in Sandage’s Hubble Atlas of Galaxies (e.g.
Mihalas and Binney 1981, Chap. 5, § 5.1, Fig. 5.3),
E5-6 in Copin et al. (2004); and the junction of
the elliptical and spiral galaxies occurs at E7 type in
the Hubble’s fork diagram (e.g. Mihalas and Binney
1981, Chap. 5, § 5.1, Fig. 5.2) and at E6 type in the
van den Bergh’s trident diagram (e.g. Mihalas and
Binney 1981, Chap. 5, § 5.1, Fig. 5.8). Additional ex-
amples of highly flattened (E6) ellipticals are NGC
821 and NGC 4697 which, together with NGC 3377,
are known to host supermassive (M ≈ 108M�) black
holes (Soria et al. 2006). Different features exhibited
by highly flattened elliptical and lenticular galaxies,
are shown by typical objects belonging to each class,
as in the cases shortly reported below.

NGC 3377 is a prototypical ”disky” ellipti-
cal galaxy with ”boxy” outer isophotes. It has a
power-law central luminosity profile and its total ab-
solute magnitude of about −19(B) is intermediate
between that of the classical ”boxy” giant ellipticals
and ”disky” lower-luminosity objects. Both dynam-
ical model and the M∗−σ relation suggest the pres-
ence of a massive black hole. For further details and
references refer to e.g. Copin et al. (2004), Soria et
al. (2006).

NGC 3115 has long been assumed to be the
prototype of the S0 galaxy type: a bulge-dominated
galaxy with an embedded disk and very little gas
and dust. The system has a nearly edge-on inclina-
tion and contains a double disk structure with an
outer Freeman type II disk, which exhibits a weak
spiral arm structure, and a nuclear disk of size about
fifty times shorter. The spheroidal component does
not seem to follow the classical r1/4 law, and the
flattened halo extends up to nine times outside the
larger disk. The bulge appears to be supported by
systematic rotation and evidence has been found for
the presence of both a central dark mass and a mas-
sive dark halo. For further details and references
refer to e.g. Emsellem et al. (1999).

5.3 The E sequence within Ellipsoidland

In dealing with a physical interpretation of the
early Hubble sequence, it is convenient to define axis
ratios of intrinsic configurations in a different way.
Given a homeoidally striated Jacobi ellipsoid, let a,
b, c, be the semiaxes, where a ≥ b ≥ c without loss
of generality. Accordingly, εca ≤ εba ≤ 1; in addi-
tion, the minor and the major axis coincide with the
rotation axis for oblate-like and prolate-like configu-
rations, respectively.

The whole range of possible configurations in
the (Oεbaεca) plane defines Ellipsoidland (the term
is from Hunter and de Zeeuw 1997). Ellipsoidland is
a triangle where two sides are of unit length and an
angle is right, as shown in Fig. 1.
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Fig. 1. Axis ratio correlation within Ellipsoidland, with regard to adjoint configurations to homeoidally
striated Jacobi ellipsoids. The semiaxes are a, b, c, where a ≥ b ≥ c or εca ≤ εba ≤ 1, without loss of
generality. The locus of flat configurations is εca = 0, 0 ≤ εba ≤ 1. The locus of oblate configurations
is εba = 1, 0 ≤ εca ≤ 1. The spherical configuration (square) is defined as εca = εba = 1. The oblong
configuration is defined as εca = εba = 0. The locus of prolate configurations is εca = εba, 0 ≤ εba ≤ 1.
Different configurations occur in the flat oblong limit, εca = 0, εba → 0, and in the prolate oblong limit,
εca → 0, εba → 0, εca = εba. A band, bounded by two horizontal dashed lines, defines class E7 in Hubble
(1926) classification i.e. 0.25 < εca ≤ 0.35 for edge-on ellipsoids where the line of sight coincides with the
direction of the minor equatorial axis. The bifurcation point from MacLaurin spheroids to Jacobi ellipsoids
is marked by a triangle. The bifurcation point from MacLaurin spheroids and Jacobi ellipsoids to pear-shaped
configurations is marked by a St. Andrew’s cross and a Greek cross, respectively.

Oblate configurations lie on the vertical side,
εba = 1, the spherical configuration (square) is on the
top, εca = 1, and the flat circular configuration is on
the bottom, εca = 0. Prolate configurations lie on the
inclined side, εca = εba, the spherical configuration
is on the top, εca = εba = 1, and the prolate oblong
configuration is on the bottom, εca = εba = 0. Flat
configurations lie on the horizontal side, εca = 0, the
flat circular configuration is on the right, εba = 1, and
the flat oblong configuration is on the left, εba = 0. It
is worth noticing that flat-oblong and prolate-oblong
configurations are not coincident (e.g. Caimmi 1993,
CM05). Non flat, non axisymmetric configurations,
lie within Ellipsoidland.

The axis ratio correlation, εca vs. εba, related
to adjoint configurations to homeoidally striated Ja-

cobi ellipsoids, is represented within Ellipsoidland
in Fig. 1. The bifurcation point from MacLaurin
spheroids to Jacobi ellipsoids is marked by a trian-
gle. The bifurcation point from MacLaurin spheroids
and Jacobi ellipsoids to pear-shaped configurations is
marked by a St. Andrew’s cross and a Greek cross,
respectively. With regard to real rotation, the corre-
lation is the known one involving classical MacLau-
rin spheroids and Jacobi ellipsoids. With regard to
imaginary rotation, the correlation reads εca = εba,
owing to lack of bifurcation points. Then configura-
tions in real and imaginary rotation branch off from
the nonrotating spherical configuration. The former
sequence proceeds down along the oblate side of El-
lipsoidland, until the bifurcation point is attained
and the curve enters Ellipsoidland, finishing when
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the next bifurcation point is also attained. The lat-
ter sequence proceeds down along the prolate side
of Ellipsoidland, until the prolate-oblong configura-
tion is attained, never entering Ellipsoidland. On
the other hand, a sequence may stop earlier, when
centrifugal support at the ends of major equatorial
axis is attained, which depends on the density pro-
file. In fact, it makes the sole difference between
homeoidally striated Jacobi ellipsoids and their ad-
joint counterparts (for further details, see CM05).

With regard to Ellipsoidland, the observed
lack of elliptical galaxies more flattened than E7
translates into the inequality, εca ≥ 0.25, the thresh-
old being represented by the lower dashed horizon-
tal line in Fig. 1. The locus of edge-on configura-
tions, viewed along a direction coinciding with equa-
torial minor axis, where 0.25 ≤ εca ≤ 0.35, and then
belonging to class E7, is represented in Fig. 1 as a
band bounded by two dashed lines, εca = 0.25 and
εca = 0.35, respectively. A change in direction of the
line of sight could project an intrinsic ellipsoid within
the above mentioned band, on a class Ei, i < 7.

An inspection of Fig. 1 shows that the bifurca-
tion points from triaxial and axisymmetric configu-
rations, towards pear-shaped configurations, are con-
sistent, or marginally consistent, with the E7 band
on Ellipsoidland. Then the occurrence of triaxiality
provides a physical interpretation to the observed ab-
sence of elliptical galaxies (and spiral bulges) more
flattened than E7, with regard to the oblate-like
branch of the sequence. In addition, the above men-
tioned data suggest the existence of some kind of
instability, which does not allow prolate configura-
tions in rigid, imaginary rotation, more elongated
than E7.

This conclusion is supported by recent results
from N -body numerical simulations, where spheri-
cally symmetric, unstable, radially anisotropic, one-
component γ models were taken as starting config-
urations (Nipoti et al. 2002). The related end-
products, in accordance with previous results (e.g.
Merritt and Aguilar 1985, Stiavelli and Sparke 1991),
were found to be in general prolate systems less flat-
tened than E7 (Nipoti et al. 2002, Fig. 1 therein).

5.4 Tidal effects from hosting dark matter
haloes

Current ΛCDM cosmologies, which provide a
satisfactory fit to data from primordial nucleosynthe-
sis and cosmic background radiation, predict galax-
ies are embedded within dark matter haloes. Then
it is a natural question to what extent the presence
of hosting dark matter haloes may affect the above
interpretation of the early Hubble sequence. To this
aim, an idealized situation shall be analysed.

Let us represent elliptical galaxies and their
hosting dark haloes as concentric and coaxial clas-
sical Jacobi ellipsoids, one completely lying within
the other. Accordingly, the two bodies must neces-
sarily rotate at the same rate, and/or one of them
(the outer in the case under discussion) has to be
axisymmetric. It can be seen that the effect of the
outer ellipsoid on the inner one is to shift bifurcation
points towards more flattened configurations with re-

spect to a massless embedding subsystem (Durisen
1978, Pacheco et al. 1986, Caimmi 1996a). In ad-
dition, the gravitational field induced by the outer
ellipsoid makes centrifugal support, at the ends of
the equatorial major axis of the inner ellipsoid, oc-
cur at a more flattened configuration than in absence
of tidal potential.

More specifically, the axis ratio of the config-
uration at the bifurcation point is the solution of the
transcendental equation (Caimmi 1996a):

[(εi)31]
2(Ai)3

(Ai)1
=

{

5 − 4[(εi)31]
2

3 − 2[(εi)31]2

+κ
4− 4[(εi)31]

2

3 − 2[(εi)31]2

}−1

; (86a)

m =
Mj

Mi
; yk =

(aj)k

(ai)k
;

m

y1y2y3
=

ρj

ρi
; (86b)

κ =
m

y1y2y3

(Aj)3
(Ai)3

; 0 ≤ κ < +∞ ; (86c)

where the indices, i, j, denote inner and outer el-
lipsoid, respectively. In the special case of massless
outer ellipsoid, κ = 0, Eq. (86a) reduces to (75).

Further analysis shows that the embedded
configuration, at the bifurcation point, can be as
flattened as E7 provided the parameter κ is close
to unity. On the other hand, the related parameters
are to be consistent with observations and cosmo-
logical models. To this aim, inhomogeneous density
profiles must be considered.

The generalization of Eq. (86a) to homeoidally
striated Jacobi ellipsoids demands to restart from a
generalized formulation of the virial theorem, where
the tidal potential is also included (Brosche et al.
1983, Caimmi et al. 1984, Caimmi and Secco 1992).
The repetition of the same procedure used in the
current paper, yields:

κ =
m

y1y2y3

(νij)tid
(νi)sel

(Aj)3
(Ai)3

; (87)

where (νij)tid is an additional factor in the expres-
sion of the potential tidal energy, related to the tidal
action of the embedding subsystem on the embedded
one (Caimmi 2003, CM05).

It may safely be expected that the external
boundary is less flattened than the internal one and
more flattened than a sphere. Accordingly, the
shape factor ratio appearing in Eq. (87), ranges as
1/2 < (Aj)3/(Ai)3 < 1 for oblate configurations,
and 1 < (Aj)3/(Ai)3 < 10/3 for prolate configura-
tions. Then, to a first extent, (Aj)3/(Ai)3 ≈ 1, i.e.
the boundaries are similar and similarly placed ellip-
soids. With this restriction, the factor, (νij)tid, is a
profile factor, which may be expressed by a simple
formula (Caimmi 2003):

(νij)tid = −
9

8

mΞi

(νi)mas(νj)mas
w(ext) Ξi

y0
; (88)

where y0 is the scaling radius ratio of outer to inner
subsystem, and w(ext) is an additional profile factor.
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Typical elliptical galaxies and their hosting
dark haloes may safely be represented as homeoidally
striated Jacobi ellipsoids, where the star and dark
subsystem are described by generalized power-law
density profiles of the kind:

fu(ξu) =
2χ

ξγ
u(1 + ξα

u )χ
; χ =

β − γ

α
; (89a)

ξu =
ru

(r0)u
; Ξu =

Ru

(r0)u
; u = i, j ; (89b)

ξi = y0ξj ; yΞi = y0Ξj ; (89c)

y0 =
(r0)j

(r0)i
; y =

Rj

Ri
; (89d)

according to Eqs. (1), and the choices (α, β, γ) =
(1, 4, 1) (Hernquist 1990) and (α, β, γ) = (1, 3, 1)
(Navarro et al. 1995, 1996, 1997) are adopted to
describe the star and the dark subsystem, respec-
tively. The values of input and output parameters
of the model are listed in Table 1, with regard to
a ΛCDM cosmology where ΩM = 0.3, ΩΛ = 0.7,
Ωb = 0.0125h−2, h = 2−1/2. For further details and
references, see CM03, CM05.

Table 1. Values of input and output parameters in
modelling elliptical galaxies and their hosting dark
haloes as similar and similarly placed, homeoidally
striated Jacobi ellipsoids, characterized by Hernquist
(1990) and Navarro et al. (1995, 1996, 1997) density
profiles, respectively. The parameters of the related
ΛCDM cosmology have been chosen as ΩM = 0.3,
ΩΛ = 0.7, Ωb = 0.0125h−2, h = 2−1/2. For further
details on the output parameters see e.g. CM03.

input value output value
Ξi 40/3 (νi)mas 10.38399
Ξj 10 (νj)mas 17.86565
(r0)i/kpc 3.21 (νi)sel 1.44444
(r0)j/kpc 36.20 (νj)sel 0.6268271
Ri/kpc 42.77 (νij)tid 0.3518317
Rj/kpc 362.04 (νji)tid 0.2217760
Mi/1010M� 8.33 (νi)rot 1/3
Mj/1010M� 91.67 (νj)rot 1/3
y0 11.29 (ηi)rot 1/2
y 8.47 (ηj)rot 1/2

m 11 w(est) −0.3955800
w(int) −3.564028
(νij)int 1.760852
(νji)int 1.760852
(

2ηrotνrot

νsel

)

i
0.230769

(

2ηrotνrot

νsel

)

j
0.531779

m
y3

(νij )tid
(νi)sel

0.00441624

(ε31)bif 0.580088

The presence of a massive halo has little influ-
ence on the location of the bifurcation point from ax-
isymmetric to triaxial configurations, which is found
to occur at an axis ratio, (ε31)bif = 0.580088, related
to κ = 0.00441624. A similar result is expected to
occur for the bifurcation point from both axisymmet-
ric and triaxial to pear-shaped configurations. Then
the above mentioned points continue to be consis-
tent, or marginally consistent, with the E7 band on
Ellipsoidland, even in presence of (typical) massive
dark haloes, concerning the oblate-like branch of the
sequence. On the contrary, it is suggested the ex-
istence of some kind of instability, which does not
allow prolate configurations in rigid imaginary ro-
tation, more elongated than E7, even in presence of
(typical) massive dark haloes, according to recent re-
sults from N -body simulations (Nipoti el al. 2002).

5.5 Cosmological effects after decoupling

About thirthy years ago, Thuan and Gott
(1975) idealized elliptical galaxies as MacLaurin
spheroids, resulting from virialization after cosmo-
logical expansion and subsequent collapse and relax-
ation of their parent density perturbation. A gen-
eralization of the method to triaxial configurations
and anisotropic peculiar velocity distributions, has
been performed in CM05, and an interested reader
is addressed therein for further details. Owing to the
results of Section 3, the case of isotropic peculiar ve-
locity distribution, involving both real and imaginary
rotation, can be considered without loss of generality.

Our attention shall be limited to dark matter
haloes hosting giant galaxies, as massive as about
1012M�. Accordingly, it is assumed δrec = 0.015
as a typical overdensity index of the initial config-
uration, taken to be at recombination epoch, and a
relaxed final configuration i.e. ζ = 1.

With regard to the initial configuration, the
following approximations hold to a good extent: (i)
spherical shape; (ii) homogeneous mass distribution;
(iii) negligible rotation energy; (iv) negligible pecu-
liar energy. The changes in mass, angular momen-
tum, and total energy, respectively, during the tran-
sition from the initial to final configuration, are ex-
pressed by the parameters, βM, βJ, βE, defined by
Eqs. (78b) and (79b), where the initial configuration
is marked by the prime. For further details, see
CM05.

Though negligible with respect to the poten-
tial and expansion energy, the rotation energy of
the initial configuration affects the shape of the final
configuration, as described by Eqs. (78), (81), (83),
(85), where different changes in mass, angular mo-
mentum, and tidal energy, are related to a same fi-
nal shape for an assigned initial configuration, pro-
vided the parameter, βE , defined by Eq. (85), does
not vary. The choice, βE = 1/3600, in particular
(βM, βJ, βE) = (1, 60, 1), holds for dark matter haloes
hosting giant elliptical galaxies, and it shall be as-
sumed here. For further details, see CM05.
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Fig. 2. Equatorial (upper curve) and meridional (lower curve) axis ratio of the final configuration, as a
function of the parameter, κE = E ′

rot/(1 − E ′
osc − E ′

pec), for sequences of relaxed Navarro et al. (1995, 1996,
1997) density profiles in rigid rotation, related to dark matter haloes hosting giant elliptical galaxies. The
curves are symmetric with respect to a vertical axis, κE = 0.5, and a minimum extremum point occurs at
(κE , ε21, ε31) = (0.5, 0.363174, 0.302297), corresponding to the most flattened, oblate-like configuration which
is allowed. Values of κE within or outside the range, 0 ≤ κE ≤ 1, are related to real or imaginary rotation,
respectively. Values of κE below or not below unity, are related to bound (finite extent) and unbound (infinite
extent) configurations, respectively. Oblate-like (ε31 ≤ ε21 ≤ 1) triaxial configurations lie between the inner,
vertical dotted lines. Oblate (ε31 ≤ ε21 = 1) axisymmetric configurations lie between the inner and the
corresponding outer, vertical dotted lines. Prolate (ε21 = 1 ≤ ε31) axisymmetric configurations lie outside the
outer, vertical dotted lines. The equatorial axis ratio is ε = ε21. The polar axis ratio is ε = ε31 for oblate and
ε = ε13 for prolate configurations. The horizontal dashed lines define class E7 in Hubble (1926) classification
i.e. 0.25 < ε ≤ 0.35 for edge-on ellipsoids where the line of sight coincides with the direction of the minor
equatorial axis.

The axis ratios of the final configuration, ε31
and ε21, as a function of the parameter, κE =
E ′
rot/(1 − E ′

osc − E ′
pec), are plotted in Fig. 2, with re-

gard to a Navarro et al. (1995, 1996, 1997) density
profile (Ξ = 9.20678; see CM05, Table 1 therein, for
further details) in rigid rotation. Each curve is sym-
metric with regard to a vertical axis, κE = 0.5, where
a local minimum is attained.

The plane, (OκEε), may be divided into
three regions, namely (a) 0.163190 ≤ κE ≤
0.836810, where triaxial configurations occur, rang-
ing from (ε21, ε31) = (1, 0.582724) to (ε21, ε31) =

(0.363174, 0.302297), the latter related to κE = 0.5;
(b) 0 ≤ κE ≤ 0.163190, 0.836810 ≤ κE ≤ 1, where
oblate configurations occur, ranging from (ε21, ε31) =
(1, 0.582724) to (ε21, ε31) = (1, 1), the latter related
to κE = 0 (bound), κE = 1 (unbound), respectively;
(c) −∞ < κE ≤ 0, 1 ≤ κE < +∞, where prolate con-
figurations occur, ranging from (ε21, ε31) = (1, 1) to
(ε21, ε31) = (1, +∞), the latter related to κE → −∞
(bound), κE → +∞ (unbound), respectively. It is
worth recalling that oblate-like (ε31 ≤ ε21 ≤ 1) and
prolate-like (ε21 ≤ 1 ≤ ε31) configurations, are re-
lated to real and imaginary rotation, respectively.
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An inspection of Fig. 2 shows that, in the case
under discussion, cosmological effects due to expan-
sion prevent dark matter haloes in real rotation from
being more flattened than E7 (dashed horizontal
band). The same holds for embedded giant elliptical
galaxies, provided the related shapes may safely be
thought of as similar and similarly placed. On the
other hand, an arbitrary elongation can be attained
by dark matter haloes in imaginary rotation, unless
some kind of instability occurs, which similarly pre-
vents configurations more elongated than E7.

The above results depend on both density pro-
file and rotation velocity profile of the final configu-
ration, via the coefficient, c, appearing in Eq. (81c).
Owing to Eqs. (7) and (18c), Eq. (81c) translates
into:

c = βE′

R′

(S ′)2
(Bsel)

2

Bram
Erot

[

2ζ − 1

2ζ
−

ζ − 1

ζ
Erot

]

(90a)

βE′ = βE

ν2
sel

νram
=

β5
M

β2
JβE

ν2
sel

νram
; (90b)

where different changes in mass, angular mo-
mentum, total energy, density profile, and rota-
tion velocity profile, are related to the same fi-
nal shape for an assigned final configuration, pro-
vided βE′ does not vary. The choice, βE′ =
6.007519·10−6, in particular (βM, βJ, βE, νsel, νram) =
(1, 60, 1, 0.610045, 17.20783), holds for Fig. 2.

6. CONCLUSION

Elliptical galaxies have been modelled as
homeoidally striated Jacobi ellipsoids where the pe-
culiar velocity distribution is anisotropic, or equiv-
alently as their adjoint configurations i.e. classical
Jacobi ellipsoids of equal mass and axes, in real or
imaginary rotation. Reasons for the coincidence of
bifurcation points from axisymmetric to triaxial con-
figurations in both the sequences (CM06), contrary
to earlier findings (Wiegandt, 1982a,b, CM05), have
been presented and discussed. The occurrence of
centrifugal support at the ends of major equatorial
axis, has been outlined.

The existence of a lower limit to the flattening
of elliptical galaxies has been investigated in dealing
with a number of limiting situations. More specifi-
cally, (i) elliptical galaxies have been considered as
isolated systems, and an allowed region within El-
lipsoidland (Hunter and de Zeeuw 1997), related to
the occurrence of bifurcation points from ellipsoidal
to pear-shaped configurations, has been shown to
be consistent with observations; (ii) elliptical galax-
ies have been considered as embedded within dark
matter haloes and, under reasonable assumptions,
it has been shown that tidal effects from hosting
haloes have little influence on the above mentioned
results; (iii) dark matter haloes and embedded ellip-
tical galaxies, idealized as a single homeoidally stri-
ated Jacobi ellipsoid, have been considered in con-
nection with the cosmological transition from expan-
sion to relaxation, by generalizing an earlier model

(Thuan and Gott 1975), and the existence of a lower
limit to the flattening of relaxed (oblate-like) config-
urations, has been established. On the other hand,
no lower limit has been found to the elongation of re-
laxed (prolate-like) configurations, and the existence
of some sort of instability has been predicted, ow-
ing to the observed lack of elliptical galaxies more
flattened or elongated than E7.

APPENDIX

A. Some properties of ellipsoid shape factors

Ellipsoid shape factors, A1, A2, A3, obey the
following inequalities (Caimmi 1996a):

an
1A1 ≥ an

2A2 ≥ an
3A3 ; a1 ≥ a2 ≥ a3 ;

n ≥ 2 ; (91a)

an
1A1 ≤ an

2A2 ≤ an
3A3 ; a1 ≥ a2 ≥ a3 ;

n ≤ 1 ; (91b)

where inequalities (91a) and (91b), the latter re-
stricted to n ≤ 0, come from analytical considera-
tions involving the explicit expression of the shape
factors (e.g. MacMillan 1930, Chap. II, § 33; A1 =
α−2, A2 = β−2, A3 = γ−2, therein), and inequal-
ity (91b), restricted to 0 < n ≤ 1, results from an
obvious generalization of a proof by Pacheco et al.
(1989).

Using Eqs. (6) and (7) yields:

Sqq

S33
=

Aq

ε23qA3
; q = 1, 2 ; (92)

and, owing to inequality (91a):

Aq ≥ ε23qA3 ; aq ≥ a3 ; q = 1, 2 ; (93)

which implies Sqq ≥ S33 for oblate-like configurations
(aq ≥ a3), and Sqq ≤ S33 for prolate-like configura-
tions (aq ≤ a3).

In the limit of axisymmetric configurations,
ε21 = 1, ε31 = ε, A1 = A2 = α, A3 = γ, and the
following relations hold (e.g. Caimmi 1991, 1993):

lim
ε→0

α = 0 ; lim
ε→0

γ = 2 ; lim
ε→0

α

ε
=

π

2
; (94)

lim
ε→+∞

α = 1 ; lim
ε→+∞

γ = lim
ε→+∞

(εγ) = 0 ; (95)

lim
ε→+∞

(ε2γ) = +∞ ; lim
ε→1

γ − α

1 − ε2
=

2

5
; (96)

dα

dε
=

1

1 − ε2

[

(1 + 2ε2)
α

ε
− 2ε

]

; (97)

dγ

dε
=

1

1 − ε2

[

(1 + 2ε2)
γ

ε
−

2

ε

]

; (98)

υ = (υN)iso = α − ε2γ ; (99)
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so that keeping in mind the general property (e.g.
Chandrasekhar 1969, Chap. 3, § 17):

A1 + A2 + A3 = 2 (100)

it can be seen that the first derivative of the rotation
parameter dυ/ dε is null provided the transcendental
equation:

α =
6ε2

1 + 8ε2
(101)

is satisfied. One solution is found to exist, which
is related to oblate configurations. It corresponds
to an extremum point where the function attains its
maximum value (e.g. Chandrasekhar 1969, Chap. 5,
§ 32).

B. Wiegandt criterion for bifurcation

Given a collisionless, self-gravitating fluid in
rigid rotation, where no internal energy transport
occurs and the residual velocity is constant on the
boundary, an upper limit for the point of bifurcation
is (Wiegandt 1982a,b):

Ω2I11 = V12;12 ; (102)

where Vpq;rs is the ”super-matrix”:

Vpq;rs =

∫

S

ρ(x1, x2, x3)xp
∂Vrs

∂xq
d3S ; (103)

Vrs(x1, x2, x3) = G (104)

×

∫

S

ρ(x′
1, x

′
2, x

′
3)(xp − x′

p)(xs − x′
s)

[(x1 − x′
1)

2 + (x2 − x′
2)

2 + (x3 − x′
3)

2]3/2
d3S;

which is expressed in terms of a generalized poten-
tial, Vrs, and the integrations are carried over the
whole volume S of the system.

In the special case of homeoidally striated Ja-
cobi ellipsoids, Eq. (102) identifies the exact point of
bifurcation (Wiegandt 1982a,b) and the following re-
lations hold (Wiegandt 1982b):

Vpq;pq = −
Ap − a2

qApq

Ap
(Esel)pp ; (105)

a2
qApq =

Ap − Aq

1 − ε2pq

; (106)

where the products, a2
qApq , are shape factors which

depend on the axis ratios only, similarly to Ap,
and symmetry with respect to the indices holds,
Apq = Aqp. In addition, Eq. (106) has been deduced
from Chandrasekhar (1969, Chap. 3, § 21), Eq. (107)
therein.

Although Wiegandt (1982b) analysis is re-
stricted to binomial density profiles (e.g. Perek 1962,
Chandrasekhar 1969, Chap. 3, § 20, Caimmi 1993),

still it may be generalized to any kind of cored den-
sity profiles, defined as:

ρW (ξ) = ρcf(ξW ) ; f(0) = 1 ; ρc = ρ(0) ; (107a)

ξW =
r

R
; 0 ≤ ξW ≤ 1 ; ΞW = 1 ; (107b)

where the scaling radius and the scaling density are
chosen to be equal to the radius R, and the central
density ρc, respectively. The following relations:

ρ =
ρ0

ρc
ρW ; ξ = ΞξW ; (108)

allow conversion from Eqs. (1) to Eqs. (107) and vice
versa.

Using Eqs. (107), the mass, the inertia tensor,
and the potential-energy tensor, take the equivalent
expression:

M = (νmas)W Mc ; (109a)

Mc =
4π

3
ρca

3
1ε21ε31 ; (109b)

Ipq = δpq(νinr)W εp1εq1a
2
1M ; (110)

(Esel)pq = −(νsel)W
GM2

a1
(Bsel)pq ; (111)

and the comparison with Eqs. (2), (3), (4), (8),
yields:

(νmas)W =
ρ0

ρc

1

Ξ3
νmas ; (νinr)W = νinr ;

(νsel)W = νsel . (112)

Finally, using Eqs. (6) and (109)-(112), the potential-
energy tensor takes the equivalent form:

(Esel)pq = −kπGρcIpqAp ; (113a)

k =
4

3

ρ0

ρc

νselνmas

Ξ3νinr
; (113b)

k being, by definition, a profile factor.
Owing to Eqs. (8), (19), (21), (31), (32),

(113b), the normalized rotation parameter, defined
by Eq. (45), may be expressed as:

υN =
Ω2

kπGρc
; (114)

which coincides with the parameter φ, defined in
Wiegandt (1982b) in the special case of rigid ro-
tation (νinr = νrot; ηrot = 1/2; see CM05), as
shown in Caimmi (1996b). Accordingly, Eq. (46)
coincides with its Wiegandt (1982b) counterpart,
Eq. (52) therein.

The combination of Eqs. (102), (105), (113),
(114), yields:

υN = A1 − a2
2A12 ; (115)
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and the comparison with Eq. (46) reads:

a2
2A12 =

ζ11

ζ33
ε231A3 ; (116)

in the limit of axisymmetric configurations, a2 → a1,
A12 → A11, the left-hand side of Eq. (116) takes the
expression (e.g. Caimmi 1995):

lim
a2→a1

a2
2A12 =

1

4

(

3A1 − ε231
A3 − A1

1 − ε231

)

; (117)

and the combination of Eqs. (116), (117), yields:

ε231A3

A1
=

[

5 − 4ε231
3 − 2ε231

+
4(1− ε231)

3 − 2ε231

ζ11 − ζ33

ζ33

]−1

;

ε21 = 1 ; (118)

which is an explicit expression of Wiegandt (1982a,b)
criterion for bifurcation, with regard to homeoidally
striated Jacobi ellipsoids in rigid rotation. In the
limit of isotropical residual velocity distribution,
ζ11 = ζ22 = ζ33, Eq. (118) reduces to (Caimmi
1996a):

ε231A3

A1
=

3 − 2ε231
5 − 4ε231

; ε21 = 1 ; (119)

as expected.
The condition, defined by Eq. (118), has to be

compared with its counterpart deduced in the cur-
rent paper, under the same assumption i.e. ζ11 = ζ22
also for triaxial configurations. The latter may be de-
duced from Eq. (77), using the relation (e.g. Caimmi
1966a):

lim
ε21→1

ε221
A2 − A1

1 − ε221
=

1

4

[

3A1 − ε231
A3 − A1

1 − ε231

]

; (120)

and the result is again Eq. (118). Then Wiegandt
(1982b) criterion for bifurcation can be deduced from
the current theory, provided isotropic residual ve-
locity distribution is assumed along the equatorial
plane, also for triaxial configurations. On the other
hand, the above assumption is in contradiction with
Eqs. (59) and then it cannot be accepted. A crite-
rion for bifurcation, consistent with Eqs. (59), is ex-
pressed by Eq. (119).

The origin of the discrepancy could be the
following. Wiegandt (1982a) assumption (ii) im-
plies Eq. (12) therein which, after integration, yields
isotropic residual velocity distribution along the
equatorial plane i.e. ζ11 = ζ22. On the other hand,
an isotropic residual velocity distribution along the
equatorial plane is related to a zero-th order ap-
proximation in some special series developments
(Marochnik 1967, Eq. (19) therein). The additional
requirement of axial symmetry makes the above men-
tioned relation be exact, but in presence of triplanar
symmetry it has to be considered as a zero-th order
approximation.

In the light of the results discussed in the cur-
rent Appendix, the analogy between the behaviour
of collisional and collisionless self-gravitating fluids,
subjected to the restrictions (Wiegandt 1982a,b): (i)
rigid rotation; (ii) constant residual velocity on the
boundary; (iii) absence of internal energy transports;
appears to be complete.

Acknowledgements – We are grateful to an anony-
mous referee for useful comments and remarks which
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Astron. Astrophys, 405, 5.

Binney, J.: 1976, Mon. Not. R. Astron. Soc., 177,
19.

Binney, J.: 1978, Mon. Not. R. Astron. Soc., 183,
501.

Binney, J.: 1980, Mon. Not. R. Astron. Soc., 190,
421.

Binney, J., Tremaine, S.: 1987, Galactic Dynamics,
Princeton University Press, Princeton.

Blaauw, A.: 1965, in Stars and Stellar Systems,
vol.V, Chap. 20, § 3.

Brosche, P., Caimmi, R., Secco, L.: 1983, Astron.
Astrophys., 125, 338.

Caimmi, R.: 1979, Astropys. Space Sci., 71, 75.
Caimmi, R.: 1983, Astropys. Space Sci., 93, 403.
Caimmi, R.: 1991, Astropys. Space Sci., 180, 211.
Caimmi, R.: 1993a, Astropys. J., 419, 615.
Caimmi, R.: 1993b, Astropys. Space Sci., 199, 11.
Caimmi, R.: 1995, Astropys. J., 441, 533.
Caimmi, R.: 1996a, Acta Cosmologica, XXII, 21.
Caimmi, R.: 1996b, Astron. Nachr., 317, 401.
Caimmi, R.: 2003, Astron. Nachr., 324, 250.
Caimmi, R.: 2006, Astron. Nachr., in press. (C06)
Caimmi, R., Secco, L., Brosche, P.: 1984, Astron.

Astrophys., 139, 411.
Caimmi, R., Secco, L.: 1992, Astrophys. J., 395,

119.
Caimmi, R., Marmo, C.: 2003, New Astron., 8, 119.

(CM03)
Caimmi, R., Marmo, C.: 2005, Astron. Nachr., 326,

465. (CM05)
Chandrasekhar, S., Leboviz, N.R.: 1962, Astrophys.

J., 136, 1082.
Chandrasekhar, S.: 1969, Ellipsoidal Figures of

Equilibrium, Yale University Press, New
Haven.

Copin, Y., Cretton, N., Emsellem, E.: 2004, Astron.
Astrophys., 415, 889.

Davies, R.L., Efstathiou, G., Fall, S.M., Illingworth,
G., Schechter, P.L.: 1983, Astrophys. J., 266,
41.

de Vaucouleurs, G. 1959, in Handbuch der Physik,
53, Astrophysics IV: Stellar Systems, S.
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ZAXTO NE POSTOJE ELIPTIQNE GALAKSIJE

SPǈOXTENIJE OD TIPA E7. TRIDESET GODINA KASNIJE

R. Caimmi

Dipartimento di Astronomia, Università di Padova
Vicolo Osservatorio 2, I-35122 Padova, Italy

UDK 524.7–52–54 : 524.88
Originalni nauqni rad

U radu su modelirane eliptiqne galak-
sije kao homeoidalno izbrazdani Jakobijevi
elipsoidi (Caimmi and Marmo 2005) kod kojih
je raspodela sopstvenih brzina anizotropna,
ili, ekvivalentno, kao ǌihove adjungovane
konfiguracije, tj. klasiqni Jakobijevi elip-
soidi istih masa i osa, u realnoj ili ima-
ginarnoj rotaciji (Caimmi 2006). Dati su
i diskutovani su razlozi za podudaraǌe bi-
furkacionih taqaka od osnosimetriqnih ka
troosnim konfiguracijama u oba niza (Caimmi
2006), xto je u suprotnosti sa ranijim rezul-
tatima (Wiegandt 1982a,b, Caimmi and Marmo
2005). Efekat centrifugalne podrxke na
ivicama glavne ekvatorijalne ose je ukratko
predstavǉen. Postojaǌe doǌe granice za
spǉoxteǌe eliptiqnih galaksija je ispi-
tano u sluqaju nekoliko graniqnih situacija.
Konkretno, (i) eliptiqne galaksije se razma-
traju kao izolovani sistemi i pokazano je da
je dozvoǉena oblast u okviru ”Ellipsoidland”-
a (Hunter and de Zeeuw 1997) u vezi sa po-

javom bifurkacionih taqaka od elipsoidnih
do ”kruxkastih” konfiguracija u skladu sa
posmatraǌima; (ii) eliptiqne galaksije se raz-
matraju kao objekti koji se nalaze unutar
haloa sa tamnom materijom i, uz razumne
pretpostavke, pokazano je da plimski efekti
od haloa koji sadr�e galaksije imaju malo
uticaja na gore pomenute rezultate; (iii)
haloi tamne materije i eliptiqne galak-
sije u ǌima, idealizovani kao samostalni
homeoidalni izbrazdani Jakobijev elipsoidi,
razmatraju se u vezi sa kosmoloxkim prela-
zom od xireǌa ka relaksaciji, uopxtavaǌem
ranijeg modela (Thuan and Gott 1975) i posto-
jaǌe doǌe granice spǉoxteǌa relaksiranih
(spǉoxtenih) konfiguracija je ustanovǉeno.
Sa druge strane, nije prona�ena doǌa granica
elongacije relaksiranih (izdu�enih) konfi-
guracija i predvi�eno je postojaǌe odre�enog
oblika nestabilnosti zbog prime�enog ne-
dostatka eliptiqnih galaksija koje su spǉox-
tenije ili izdu�enije nego tip E7.
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