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SUMMARY: Some asteroids and comets with Earth-crossing orbit may impact
our planet, thus we need to be able to identify the cases which could have a danger-
ous close approach within a century. This must be done as soon as such an asteroid
is discovered, allowing for follow up observations which might contradict the impact
possibility, and in the worst case to organize mitigation, possibly including deflec-
tion. The mathematical problem of predicting possible impacts, even with very
low probabilities, has been solved by our group in the last few years. This paper
presents the basic theory of these impact prediction, and discusses how they are
practically used in the impact monitoring systems now operational, in particular
the CLOMON2 robot of the Universities of Pisa and Valladolid.
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1. THE PROBLEM OF
IMPACT WARNING

When an asteroid/comet has just been discov-
ered, its orbit is weakly constrained by the available
astrometric observations and it might be the case
that an orbit with impact on the Earth in the near
future (the next 80 ∼ 100 years) cannot be excluded.
Of course if additional observations are obtained, the
uncertainty of the orbit decreases and the impact
may become incompatible with the available infor-
mation. Thus, if we are aware that an impact is pos-
sible, it is enough to spread this information to the
astronomers to convince them to attempt additional
observations of the same object. On the contrary if
this piece of information is not available, or is made
available too late, when the asteroid has been lost
(having become too dim and/or with too uncertain
ephemerides to allow for targeted recovery), then the
impact risk will remain until the same asteroid is ac-
cidentally recovered. This accidental recovery might
be too late, e.g., minutes before the impact, for any
mitigation action.

The above situation, full of contradictions, can
be entangled in only one way: all the asteroids, im-
mediately after being discovered and well before they
could be lost, need to be ”scanned” for possible im-
pacts in the near future. If impacts are possible, this
information must be broadcast to the astronomers as
soon as possible. This is the goal of impact monitor-
ing. It is somewhat surprising that this was not really
possible until late 1999, when the first impact mon-
itoring system, the CLOMON software robot of the
University of Pisa, became operational. For many
years, even after the risk of impacts of asteroids
and comets on our planet had been identified and
its probability estimated, even while dedicated sur-
veys were scanning the sky to discover as many Near
Earth Asteroids (NEA) and cometsas possible, the
algorithms to scan a given, known asteroid for possi-
ble impacts were not effective enough. By using the
linear theory (see Section 2.1) of impact prediction
it was indeed possible to identify impact possibilities
with comparatively high probability, of the order of
10−3 ∼ 10−4. On the other hand, if the possible
event was the impact of an asteroid with diameter
exceeding 1 km, which would result in an explosion
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with a yield in excess of 20, 000 Megatons, even a
probability of the order of 10−6 ∼ 10−7 cannot be
considered negligible, and to omit to follow up such
dangerous asteroid could be considered a crime. On
the contrary, unfounded announcements of possible
impacts, as in the case of 1997 XF11 in March 1998,
can undermine the credibility of the scientific com-
munity involved and thus make it more difficult to
obtain the resources necessary in a serious case.

For the first time in 1999 our group was able
to issue a warning of a possible impact for asteroid
1999 AN10 (Milani et al. 1999). Although the impact
probability announced for the year 2039 was ' 10−9,
so small that it would not need to be cause of concern
for the public, it was the proof that the mathemat-
ical problem had been solved1. The new methods
introduced for the 1999 AN10 case led to the estab-
lisment of the impact monitoring system CLOMON
later in the same year.

In 2002 the first generation impact monitoring
system CLOMON was replaced by the second gener-
ation CLOMON2 in Pisa (duplicated also at the Uni-
versity of Valladolid) and SENTRY at NASA’s Jet
Propulsion Laboratory. These two independent sys-
tems, whose output is carefully compared to increase
reliability, now guarantee that the potentially dan-
gerous objects are identified very early (within hours
from the dissemination of the astrometric data) and
followed up until the observations succeed in con-
tradicting the possibility of an impact. Note that
during the time span over which these observations
are obtained the announcement that some asteroid
has the possibility of impacting must be in full view
of the public, and in practice it is posted on a web
page2. This is essential to communicate the need of
observations to the astronomical community and also
reassures the public that no information on impact
risk is withheld.

In case the impact possibility remains for a
long time, as it is currently the case for asteroids
(99942) Apophis and 2004 VD17 which have been on
the risk pages of CLOMON2 ands SENTRY for more
than one year, it is reasonable to begin planning for
the mitigation actions which may become necessary
if the later observations were to confirm, rather than
contradict, the impact. Although the probability of
an impact is small for both cases, we must have a
technologically possible method to deflect these two
asteroids which can be used if necessary; otherwise,
the practical utility of the surveys and of the impact
monitoring itself would be cast into doubt.

The purpose of this paper is to give a general
outline of the mathematical theory and of the com-
putational methods used in the impact monitoring
systems, in particular in CLOMON2.

2. TARGET PLANES

The geometry of the encounters with a planet
can be described in terms of a target plane, a plane
in 3-D space through the center of the target planet,
e.g., the Earth, orthogonal to the direction of the rel-
ative velocity of the approaching small body. In this
context, an impact can be described as an orbit con-
taining a target plane point inside the planet cross
section on the same plane.

There are two ways to give a rigorous defini-
tion of target plane. The simplest definition is the
Modified Target Plane (MTP): it is obtained (Mi-
lani and Valsecchi 1999) by considering the time t at
which the small body orbit has a relative minimum of
the distance from the planet’s center of mass (CoM).
Let d and v be the planetocentric position and ve-
locity vectors of the asteroid at the time t; because
the distance is minimum, d · v = 0. The MTP is
the plane, containing 0 (the CoM) and normal to
v. This plane contains the point d, which represents
the trace of the close approach on the MTP. A com-
plete description of the close approach is obtained
by assigning two coordinates on the MTP, two an-
gles defining the orientation of the MTP, the size of
the velocity v = |v| and the time t. The cross sec-
tion of the planet on the MTP is a disk centered at 0
and with the radius R of the planet; if the minimum
distance d at time t is less than R there is an impact3

The other definition, called in the literature
either just Target Plane (TP) or b-plane, uses the
same vectors d and v describing the state at the
closest approach time t to compute a planetocentric
2-body approximation of the orbit. If, as it is gen-
erally the case, such planetocentric 2-body orbit is
hyperbolic, then the TP is the plane orthogonal to
the asymptote of the hyperbola, that is to the vector
u which is the limit for t → −∞ of the planeto-
centric velocity along the hyperbolic trajectory; the
size u = |u| is the velocity of escape. The point b
representing the close approach on the TP is the in-
tersection of the asymptote with the TP; its size is
the impact parameter b, which is in fact larger than
the minimum distance d by a factor

β =
b

d
=

√

v2 d

v2 d − 2 G M

where G M is the gravitational universal constant
multiplied by the planet mass. A complete descrip-
tion of the close approaching orbit is obtained by
assigning two coordinates ξ, ζ on the TP, two angles

1The impact probability was later found to be even higher for impacts in 2044 and 2046; a few months later, the precovery of
1999 AN10 in old plates going back to 1955 allowed to contradict whatever possibility of impact in the 21st century.

2http://newton.dm.unipi.it/neodys for CLOMON2 and http://neo.jpl.nasa.gov for SENTRY.

3This is true in the approximation in which the planet surface is a sphere; the oblateness of the planet is generally irrelevant
for the question of the possibility of an impact, although it may matter when predicting the point of impact.
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θ, φ defining the orientation of the TP, the size of the
velocity of escape u = |u| and the time t (Greenberg
et al. 1988). Note that on the TP the impact cross
section is a disk of radius

B = R

√

1 +
2 G M

R u2

larger than the physical radius of the planet by a
factor accounting for gravitational focusing.

The transformation between the two planes is
complicated, because the velocity v at the close ap-
proach is rotated by an angle γ/2 around the axis of
the planetocentric angular momentum. The angle γ
measures the total deflection from the incoming to
the outgoing asymptote and can be computed by

sin(γ/2) =
G M

v2 d − G M
.

The transformation of coordinates rotating and
rescaling the MTP unto the TP is not canonical, thus
it is impossible to use the Hamiltonian formalism in
the context of the TP (Tommei 2006a,b). Moreover,
the choice of the coordinates on the two planes can
be done in different ways, and this has also to be
accounted in the transformation.

From an abstract point of view, it does not
matter in which way we select a representative vec-
tor for a given close approach, provided it is a smooth
function of the orbit initial conditions: any other co-
ordinate system can be obtained by a smooth coordi-
nate transformation. However, some coordinate sys-
tems are more equal than others, because the propa-
gation of the uncertainty is easy to do in a linear ap-
proximation, by using the differential of the transfor-
mations, and a coordinate change with large higher
order derivatives introduces strong limitations in the
applicability of the linearization. Thus there is a sig-
nificant advantage in using the TP with respect to
the MTP, because gravitational focusing introduces
a deformation which is more nonlinear where gravity
is stronger, that is near collisions.

2.1 Linear Predictions on Target Planes

For a given asteroid, and a set of orbital el-
ements x ∈ R

6 at epoch t0, there is a unique orbit
which can be accurately propagated for some time
span4 after t0. For each close approach to the Earth,
occurring within this time span, there is at least one
point y ∈ R

2 which is the trace of this orbit on the
target plane5. To avoid useless geometric compli-
cations, we consider close only approaches with a
distance from the planet CoM not exceeding some

value dmax; practical values for dmax range between
0.05 and 0.2 Astronomical Units (AU), thus the tar-
get planes are in fact disks with a finite radius.

The classical procedure uses as nominal ini-
tial conditions at t0 the solution x∗ of a least squares
fit. The details of the classical procedure to compute
least squares orbits are not within the scope of this
paper, just to assign the notation we call ξ ∈ R

m the
vector of the residuals (observed minus predicted)
for all the available observations, both optical and
radar, with m > 6. Then we use a target function
Q = ξT W ξ/m where W is a symmetrical positive
definite weight matrix, accounting for the uneven ac-
curacy of observations from different observatories6.
Also correlations and biases can be accounted for
(Carpino et al. 2003).

The normal equations Cx ∆x = K for the
(linearized) correction ∆x to the initial conditions x
are defined by the design matrix B = ∂ξ/∂x

Cx = BT W B , K = −BT W ξ

and are solved by ∆x = Γx K, using the covariance
matrix Γx = C−1

x
. The right hand side K is propor-

tional to the gradient of the target function Q. The
corrections ∆x are applied in an iterative procedure
of differential corrections until convergence to x∗ cor-
responding to a (possibly local) minimum Q∗ of Q.
The nominal solution x∗ should not be understood
as ”the true solution”, but just as a representative
central point in a region of confidence of possible
solutions. To describe the confidence region, note
that 2C/m is an approximation, applicable for small
residuals ξ, to the matrix of second partial deriva-
tives of Q. Thus the target function can be approxi-
mated in a neighborhood of x∗ by the expansion

Q(x) = Q∗+∆Q = Q∗+
1

m
(x−x∗)T Cx (x−x∗)+. . .

(1)
where the dots stand for higher order terms (Milani
1999). If these are neglected, the penalty ∆Q can be
approximated by a quadratic form in the x variables,
and the confidence region where its value is small can
be approximated by a confidence ellipsoid described
by the inequality

m ∆Q(x) ' (x − x∗)T Cx (x − x∗) ≤ σ2 (2)

where σ2 is a confidence parameter, related to the
χ2 test parameter of statistics.

As the nominal solution x∗ is surrounded by
a 6-dimensional confidence region of acceptable so-
lutions, the trace point y∗ = g(x∗) determined by

4In the current impact monitoring systems, the orbits are generally propagated for 80 to 100 years. Only for some orbits,
determined in an especially accurate way, it is meaningful to propagate for longer time spans.

5It is possible that a close approach has multiple local minima of the distance to the planet CoM, in which case there are
multiple target plane trace points. Reducing dmax can often eliminate such complications.

6Weighting is also necessary to combine dimensionally different quantities like the angles of the optical observations and the
range/range rate of the radar. Radar observations, with relative accuracies in the range ' 10−9, must have more weight, but
the relative weighting with respect to the optical data is a critical problem.
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the propagated nominal orbit on the target plane
of some encounter is surrounded by a 2-dimensional
confidence region. To compute an approximation,
we use the differential of the map g(x) providing
the target plane trace (Milani and Valsecchi 1999).
Indeed, the trace point is obtained by finding the
time tc(x) of the crossing of the target plane for
each orbit with initial conditions x (in a neighbor-
hood of x∗). By using Cartesian geocentric coordi-
nates ξ, η, ζ such that η = 0 is the target plane, the
equation η(t,x) = 0 implicitly defines the crossing
time t(x) as a differentiable function, thus ξ(t(x),x)
and ζ(t(x),x) are differentiable too. Using the dif-
ferential Dg(x∗) = ∂(ξ, ζ)/∂x we can compute the
covariance and normal matrix of the y prediction by
the linear covariance propagation formula

Γy = Dg Γx (Dg)T , Cy = Γ−1
y

defining the confidence ellipse on the target plane

(y − y∗)T Cy (y − y∗) ≤ σ2 (3)

with the same confidence parameter σ2. This formal-
ism is always applicable because the trace function is
differentiable, how good is the quadratic approxima-
tion of Eq. (3) to the full confidence region is another
matter. However, if this approximation is adequate,
then the possibility of an impact can be studied by
looking for intersections of the confidence ellipse of
Eq. (3) with the impact cross section.

By using a Gaussian formalism, which asso-
ciates to the family of concentric ellipsoids of Eq. (2)
a probability density function constant on each el-
lipsoid, it is possible to define a probability density
also on the target plane. In the linear approximation
corresponding to the differential Dg(x∗), the proba-
bility density of y is also Gaussian and has constant
values on the ellipses of constant σ of Eq. (3). Then
it is possible to compute a probability integral on the
impact cross section, which gives an estimate of the
impact probability.

The formalism above is well known for the ap-
plications to the navigation of interplanetary space-
craft, a case in which the assumptions of small con-
fidence regions and therefore the applicability of lin-
earization are well founded, simply because space-
craft are tracked as much as necessary to maintain
their orbit determination in a linear regime. To esti-
mate the probability of impact of asteroids is much
more difficult, due to nonlinearity.

2.2 The Sources of Nonlinearity

There are three main reasons why the impact
predictions are nonlinear, thus the target plane con-
fidence regions are poorly approximated by ellipses.

First, when an asteroid/comet has been re-
cently discovered, its orbit is weakly constrained by
the available observations, and some of the eigenval-
ues of the covariance matrix Γx are large, and some
of the axes of the confidence ellipsoids of Eq. (2) are
long. Then the approximation neglecting the higher

order terms in Eq. (1) is poor, and the shape of the
confidence region containing values of x compatible
with the observations is very different from an el-
lipsoid: the trace of this region on the target plane
is very different from an ellipse, and the probability
density of y is very different from a Gaussian.

Second, the propagation of the initial condi-
tions x(t0) to a time t close to the epoch of the close
approach, many years later, is also nonlinear. The
formula for linear propagation of the covariance ma-
trix still applies: if A is the 6 × 6 state transition
matrix, the matrix of partial derivatives of the ele-
ments x(t) with respect to the elements x(t0), then
the covariance and normal matrices at time t are

Γx(t) = A Γx(t0) AT , Cx(t) = Γ−1
x(t) . (4)

In many cases, the confidence ellipsoid defined by
Cx(t) is a very poor approximation even when the
one defined by Cx(t0) is a good one. This because, as
time passes, the longest axis of the confidence ellip-
soid becomes longer and longer. In a 2-body propa-
gation, the largest eigenvalue of the covariance ma-
trix grows quadratically with time; the correspond-
ing eigenspace is approximately aligned with the or-
bital velocity. Thus the longest axis of the confidence
ellipsoid grows linearly with time and is close to the
along track direction: when this length is a non neg-
ligible fraction of the length of the orbital ellipse the
nonlinear confidence region should bend to follow the
curvature of the ellipse. In a full N-body propaga-
tion, the longest axis of the confidence ellipsoid can
grow exponentially with time, with a characteristic
Lyapounov time of the order of the time interval be-
tween two close approaches, which could be as short
as 3-4 years.

This effect is amplified because the close ap-
proaches can in practice be recorded by their target
plane trace only provided the minimum distance d
is below some value dmax. Then the nominal orbit
could have, in this sense, no close approach and no
target plane trace at all, in which case the confidence
ellipse does not even exist. Even when the nominal
trace point exists, the confidence ellipse may extend
well outside the disk of radius dmax and the real con-
fidence region may contain multiple connected com-
ponents on the target plane.

The third reason is the gravitational focusing,
taking place on the MTP specifically for encounters
very close to the Earth CoM, e.g., for the impacts.
This effect is generally small, but it affects precisely
the orbits we are most interested in studying. Thus
it is convenient to remove this source of nonlinearity
by choosing the TP as representative plane.

2.3 Minimum Orbital Intersection Distance

A convenient reference system for the geocen-
tric position on the TP (ξ, η, ζ) is obtained by align-
ing the negative ζ-axis with the projection of the
Earth’s heliocentric velocity v⊕, the positive η-axis
with the geocentric velocity (i.e., normal to the TP),
and the positive ξ-axis in such a way that the refer-
ence system is positively oriented. With this frame
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of reference the TP coordinates (ξ, ζ) indicate the
cross track and along track miss distances, respec-
tively. In other words, ζ is the distance by which the
asteroid is early or late for the minimum possible dis-
tance encounter. The associated ”miss time” of the
target plane crossing (η = 0) is ∆t = ζ/(v⊕ sin θ),
where θ is the angle between u and v⊕: a positive ζ
implies that the asteroid is ”early” at the date with
the Earth, ζ < 0 means the asteroid has been late.

On the b-plane the ξ coordinate is the mini-
mum distance that can be obtained by varying the
timing of the encounter. This distance is closely re-
lated to the length known as the Minimum Orbital
Intersection Distance (MOID), that is the minimum
separation between the osculating ellipses as curves
in 3-dimensional space, without regard to the phase
on each of the two. Note that the approximation of
the MOID with the ξ coordinate is valid only in the
linear approximation and can break down for distant
encounters (e.g., beyond several lunar distances).

To compute the MOID exactly it is possible to
write a system of two equations in the two anoma-
lies parameterizing the points on the two orbits. The
solutions of this system are couples of values of the
anomalies corresponding to points with stationary
distance. By a suitable transformation, using either
the true of the eccentric anomaly, the system of equa-
tions can be expressed in a polynomial form, and it
can be solved, e.g., with the resultant method, giving
a single polynomial equation of degree 20. The real
roots of this equation, which cannot be more than
16, correspond to stationary points for the distance,
some of which can be local minima. There are known
examples with up to 12 stationary points and up to
4 local minima (Gronchi 2002).

The most typical case of double minimum is
the one of asteroids with high inclination and the two
nodal points (intersections of the osculating ellipse
with the ecliptic plane) both near the Earth orbit,
e.g., 1999 AN10. Then there are two local minima
of the distance, both occurring for points on the two
orbits near the line of nodes (joining the two nodal
points), a maximum point and 3 saddle points7. The
implication is that the ξ coordinate may refer to each
one of the two local minima, possibly with very dif-
ferent values: for 1999 AN10 a very close approach
is possible near the ascending node, only a moder-
ately close approach (beyond the lunar distance) is
possible near the descending node.

The role of the MOID in impact monitoring is
to select, among the large number (thousands, even
tens of thousands) of close approaches possible for a
given asteroid, the ones which could be very close.
If the TP coordinates have a small value of ξ and
a large value of ζ, then the encounter has not been
close, but another orbit with slightly different orbital
phase might get in time to the date with the Earth
at the local MOID point, if the value of ζ has a large
enough uncertainty. In a linear approximation, ap-
plicable to very close encounters, the confidence el-
lipse has a major axis almost parallel to the ζ axis

and a minor axis almost parallel to the ξ axis, that is
expressing the uncertainty of the local MOID value.

When the orbit, as determined at the initial
time t0, has comparatively large uncertainties, the
uncertainty of the MOID value should be computed
in a more accurate way. Indeed it is possible that the
MOID of the nominal orbit x∗ is large and still a very
small the value for the MOID, even 0, is compatible
with the observations.

There are mathematical difficulties in the esti-
mate of the uncertainty of the local MOID value dM

because in fact dM(x) is not a single valued function
and anyway is not differentiable when the value is
0 (because of the square root needed to obtain the
distance from the smooth distance squared). This
problem has been solved by defining a signed local
MOID which is generally a smooth function: the sign
is assigned by using the orientation of the triple of
vectors formed by the vector joining the position of
the planet and the asteroid at the local MOID point
and by the tangent vectors of the two orbits. It can
be shown that this modified local MOID is a smooth
function of the orbital elements, even for 0 distance,
outside a small set of singularities, thus it is possible
to use the differential to provide a linear approxima-
tion to estimate a confidence interval. (Gronchi and
Tommei 2006). In this way it is possible to identify
the cases in which very close approaches are possible
although the nominal orbit has a large MOID.

3. VIRTUAL ASTEROIDS

When an asteroid has only recently been dis-
covered, or anyway has been observed only for a
short time span, we do not know ”the orbit” of the
real object, but rather we can describe our (lack of)
knowledge by thinking of a swarm of Virtual As-
teroids (VA), with slightly different orbits all com-
patible with the observations, that is belonging to
the confidence region. The reality of the asteroid is
shared among the virtual ones, in the sense that only
one of them is real, but we do not know which one.
Since the confidence region contains a continuum of
orbits, each VA is in turn representative of a small
region, i.e., its orbit is also uncertain, but to a much
smaller degree. This smaller uncertainty enables us
to use for each VA some local algorithms, such as
linearization, which would be inappropriate over the
entire confidence region. Note that the nominal or-
bit is just one of the VA, and is not extraordinary in
this context.

The reason for using a swarm of VA is that
they are a set of orbits, which can be propagated one
by one, representing the totality of orbits compatible
with the observations much better than the nom-
inal solution alone. Moreover, by propagating to-
gether with the orbits the corresponding state tran-
sition matrices, we can use a linear approximation
in a neighborhood of each VA. Every differentiable
function can be locally approximated by its differen-

7See figures showing the location of the stationary point and the level lines of the distance on the NEODyS web site at
http://newton.dm.unipi.it/cgi-bin/neodys/neoibo?objects:1999AN10;statpts;gif
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tial: of course it is not easy to decide how many such
points are needed to keep up with strong nonlinear-
ities. On the other hand, the N-body problem not
being integrable, there is no way to compute globally
the totality of orbits corresponding to the confidence
region; only a finite set of orbits can be numerically
propagated, and the number of such orbits cannot be
huge, otherwise the CPU time needed for the com-
putation might become comparable to the time span
from the discovery to the possible collision.

Thus the critical issue is how to sample the
confidence region in an efficient way, that is with few
orbits8 but selected in such a way that they are as
representative as possible of the different possible or-
bits. There are two classes of sampling methods used
in the selection of VA: the random, or Monte Carlo
(MC) methods, and the geometric sampling meth-
ods, in which the sampling takes place on the inter-
section of a geometric object, a differentiable mani-
fold, with the confidence region.

The MC methods directly use the probabilis-
tic interpretation of the least squares principle. Since
the orbit determination process yields a probabilistic
distribution in the space of orbital elements, the dis-
tribution can be randomly sampled to obtain a set of
equally probable virtual asteroids. They will be more
dense near the nominal solution, where the probabil-
ity density is maximum, and progressively less dense
as the RMS of the residuals increases (Chodas and
Yeomans 1996). This can be implemented in differ-
ent ways, by using a random number generator to
sample an assumed probability density either in the
space of the elements x, or in the space of all residuals
ξ, or in a subset of the residuals (statistical ranging,
Virtanen et al. 2001).

When the computational resources are not an
issue and the probabilistic error models are reliable,
the MC methods are more rigorous and complete,
thus they are often used for checking the results once
a case of possible impact has been identified. If by
impact monitoring we mean checking all newly dis-
covered, or anyway re-observed, asteroids for the pos-
sibility of a future impact, then computational com-
plexity is the main concern and the MC methods
are too slow, at least for the current computer hard-
ware. Then the geometric sampling methods have
to be used. In this paper we will concentrate on the
one-dimensional sampling methods, in which the ge-
ometric object is a smooth line sampled by a regular
sequence of intervals. More complex methods, such
as 2-dimensional ones using a 2-manifold and sam-
pled with a Delaunay triangulation, have been pro-
posed and are being studied (Tommei 2005) but are
not yet being used in operational impact monitoring.

3.1 The LOV as Geometric Sampling

As discussed in Section 2.2, some years after
the epoch of initial conditions the confidence region
becomes stretched in the along track direction. Since

the goal of impact monitoring is to warn of possible
impact with a long warning time (typically decades),
the best way to sample the confidence region is by
defining a curve which intuitively can be the ”spine”
of such an elongated confidence region.

To give a formal definition, let us start again
from the linear approximation, that is from the nor-
mal equation Cx ∆x = K. The matrix Cx has a
smallest eigenvalue λ1, corresponding to the longest
axis σ1 = 1/

√
λ1 of the confidence ellipsoid of Eq. (2)

for the parameter σ = 1. Let v1 be the eigenvector
corresponding to λ1: it represents the weak direction
for orbit determination.

The Line Of Variation (LOV) is the curve in
the space of initial conditions x on which K is par-
allel to v1, that is, the gradient of Q is along the
weak direction (Milani et al. 2005a). In the lin-
ear approximation the LOV coincides with the long
axis of the confidence ellipsoid, but in general it is
a curved line. An explicit analytical expression to
compute the LOV is not available, but there is an
efficient iterative procedure to compute a point on
the LOV starting from an arbitrary first guess x0.
The algorithm is a variant of differential corrections
in which, at each step, the correction ∆x is reduced
by removing the component along v1

∆x = Γx K − (vT

1 Γx K)v1 .

At convergence this iterative constrained differential
corrections method gives a point on the LOV. To
sample the LOV it is possible to use a step-like prop-
agation, starting from the nominal x∗ which belongs
to the LOV, moving along the weak direction for a
short step x′ = x∗ + h σ1 v1, with small h, then per-
forming constrained differential corrections until con-
verging to the LOV point x; to it we assign σ = h as
parameter (although this is an approximation of the
unknown parameterization of the LOV as a smooth
line, exact only in the linear case). With this proce-
dure it is possible to compute a set of LOV points
centered at the nominal and regularly spaced in the
parameter σ.

The problem with the LOV definition is that
it is not independent from the choice of coordinates
in the space of initial conditions x. Under a coor-
dinate change with partial derivatives matrix A, the
normal and covariance matrix change as in Eq. (4),
the eigenvalues and eigenvectors are not invariant:
e.g., the LOV for Keplerian elements and the one
for Cartesian coordinates are not the same. Thus
we have to chose the coordinate system which gives
the LOV more representative of the set of orbits fill-
ing the confidence region, and this depends upon the
purpose for which we have built the sampling. For
impact monitoring, at least when we are interested
in predictions for times much later than the initial
conditions, the most important changes in the or-
bit elements are the ones in semimajor axis, and the
metric should be chosen accordingly.

8In the impact monitoring practice with current computer hardware, this means between a few thousands and a few tens of
thousands of orbits for each asteroid.
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3.2 The LOV trace on the Target Planes

Once the LOV sampling has been computed,
we have a set of VA xi for 1 ≤ i ≤ 2k + 1, corre-
sponding to values (i − k − 1) · h of the parameter
σ. By propagating each of the VA orbits for a given
time span (80 ∼ 100 years) we record for each VA
all the close approaches to the Earth within the dis-
tance dmax. Each close approach is represented by at
least one trace point (ξ, ζ) on the TP; the confidence
ellipse is also computed, with a major semiaxis of
length s (stretching) and a minor one w (width).

Up to this point the procedure is the same,
whatever the sampling method. However, the LOV
sampling is not just a set of points, we can exploit the
fact that they sample a smooth line: the trace of the
LOV on the TP is also a smooth line. Let us suppose
two consecutive VAs, xi and xi+1, have TP trace
points yi and yi+1 straddling the Earth impact cross
section, such that the trace point yi is ”early”, that
is ζi > 0, while yi+1 is late, ζi+1 < 0. Then there is
one point xi+δ on the LOV (as a continuous curve)
corresponding to the parameter σ = (i− k − 1 + δ) h
with 0 < δ < 1 such that ζi+δ = 0: this must nec-
essarily occur provided the trace of the segment of
the LOV between yi and yi+1 lies entirely within
the distance dmax from the Earth CoM. This is the
first instance of the principle of simplest geometry we
will further discuss in the next Section: cases with
extreme nonlinearities violating the continuity con-
dition implicitly used above for the function ζ(σ) are
possible, but this is less frequent than the simple case
in which the segment joining yi to yi+1 is not much
curved and behaves qualitatively like a straight line.

The point xi+δ on the LOV, which was not
among the original set of VAs, can be computed as
follows. First an approximate value of the real pa-
rameter δ is computed by using a regula falsi step, in
such a way that it approximates the point giving a lo-
cal minimum of the distance to the Earth on the TP.
Then a step of length δ h is performed with the same
formula x′ = xi + δ h σ1 v1 used for the original VA
sampling, finally a constrained differential iterative
procedure is used to correct to a LOV point which is
taken as xi+δ . If the corresponding TP trace yi+δ is
not the minimum distance point along the LOV trace
the procedure is iterated. At convergence we obtain a
LOV point of (local) minimum of the close approach
distance; if the continuity condition is satisfied, this
regula falsi iteration has guaranteed convergence. If
this TP point is inside the Earth impact cross sec-
tion, then xi+δ there is a Virtual Impactor (VI), that
is a connected set of initial conditions leading to an
impact (at about the same date). If the point yi+δ

is outside the impact cross section, but the width w
of the confidence ellipse computed by linearizing at
yi+δ is large enough, then there are intersections of
the confidence ellipse and the impact cross section
and there is anyway a VI, although the correspond-
ing initial conditions do not belong to the LOV.

By computing the probability density function
with a suitable Gaussian approximation centered at
xi+δ it is possible to estimate the probability inte-
gral on the impact cross section, that is the Impact

probability (IP) associated with the given VI. These
computations are always approximate, nevertheless
they are better than the estimates done with MC
type sampling when the IP is low, because the MC
estimates based upon the number of impacting VA
suffer from the uncertainties of small number statis-
tics. In the most extreme cases, a MC sampling is
likely not to provide any impacting VA if the num-
ber of VAs is less than 1/IP . On the contrary, the
geometric sampling methods described here can de-
tect VIs with IP of the order of 10−7 ∼ 10−8 (and
sometimes even less) starting from a few thousands
VAs on the LOV. The issue of completeness in the
searches for VIs is more complex and needs to be
discussed in the context of the geometric theory of
the next Section.

4. GEOMETRY OF TARGET
PLANE TRAILS

To understand the properties of the TP trace
of the LOV we need to use the finite sample formed
by the trace points yi as markers of a geometric
structure. To do this, after computing all the close
approaches to the Earth for all the VAs xi, with
i = 1, 2k + 1, we sort them by time of the closest
approach. Then the recorded close approaches ap-
pear to cluster around a discrete set of encounter
times, which can be interpreted as passages of the
Earth through the point corresponding to the (lo-
cal) MOID while the asteroid is neither very late nor
very early at its MOID point. Each of these clusters
of close approaches form a shower, and a shower is
represented as a set of trace points on the TP.
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Fig. 1. A single shower with five trails for the
asteroid 1998 OX4 in January 2046. The Earth is
depicted by the ”⊕”. The two diamonds that are con-
nected by the dotted line actually correspond to a trail
with collision, emphasizing that care must be taken
when interpolating between solutions. Note the axes
are not to scale. These trails have been computed
by using only the observations obtained in 1998; the
asteroid was recovered in 2002 and the new observa-
tions have shown that there is no risk of impact.
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In some cases, corresponding to comparatively
slow encounters, the situation can be somewhat more
complicated, see Fig. 6 of Milani et al. (2005b),
but let us assume this decomposition of the set of
close approaches in showers has been obtained. Next
we decompose each shower into contiguous LOV seg-
ments; this is easily obtained by sorting the shower
according to the index i. A subset of a shower with
contiguous indexes i is a trail. In some cases a trail is
a singleton, formed by just one of the selected VAs.
Fig. 1 shows the trace on the TP for a shower con-
taining 5 trails, including one singleton and a ”dou-
bleton” with just two TP points.

4.1 The principle of simplest geometry

We can conjecture that a trail with h ≤ i ≤ k
corresponds to a continuous set, a segment of the
LOV, with a corresponding curve segment of TP
trace points joining yh to yk. Because of the finite
sampling, we cannot prove that this must be the case.
This hypothesis could be verified by densifying the
LOV sampling: if some of the new VA miss the TP,
that is do not have a close approach (within dmax)
around the same date, we cannot exploit the differ-
entiable structure of the LOV. However, if such a TP
segment of differentiable curve exists, we can draw
very important conclusions.

Let us take as an example the ”doubleton” of
Fig. 1. To interpolate linearly between the two ex-
tremes yi and yi+1, as suggested by the dotted line
in the Fig., is obviously a very poor approximation:
the trails with more TP points do suggest a signifi-
cant curvature of the TP trace curves. We can use
an additional piece of information: the map from the
LOV to the TP is differentiable, thus there is a tan-
gent vector to the TP trace curve at the point yi.
If the angle between this vector and the direction to
the origin is < π/2, this implies that the close ap-
proach distance is decreasing for increasing values of
the LOV parameter σ at the value σi corresponding
to xi. The same computation can be done at yi+1,
and the close approach distance is found to increase
with σ at the value σi+1. If the TP trace segment
joining continously yi to yi+1 exists, then there is
for some value of σ in the interval (σi, σi+1) a local
minimum of the close approach distance.

In conclusion, if we make the assumption that
the behavior of the TP curve is simple, more exactly
as simple as it is compatible with the existing decom-
position of the shower into trails, we expect to have
at least one local minimum of the close approach dis-
tance for each trail. This is why we adopt the prin-
ciple of simplest geometry, by which the curve does
not exit the TP disk of radius dmax: then there need
to be at least one minimum of the close approach
distance. We can define constructive algorithms for
the determination of at least one minimum. Note
that it is also an assumption that such minimum is
unique for each trail. In the case of the ”doubleton”
of Fig. 1, the minimum is indeed such that there is
a VI, but this result cannot be obtained by using a
simple linear approximation.

In fact, the shape of the TP trace curve be-
tween two given VAs can be much more complex

than the simplest geometry, the convergence of the
minimum-finding algorithms and/or the uniqueness
of the local minimum may fail. However, if the TP
trace curve has extreme nonlinearities over a very
short segment of the LOV, that implies the stretch-
ing is large and thus the IP is low. This is a robust
qualitative argument, that is the VI we can find by
using this method have larger IP that the ones we can
miss, but unfortunately we have not yet been able to
transform it into a quantitative argument, that is in
an estimate of the maximum IP of the missed VIs.
Thus we do not yet have an analytical estimate of
the maximum IP for which we can guarantee com-
pleteness in the search for VI.

Another application of the principle of sim-
plest geometry can be appreciated from the trail with
5 TP points appearing near the bottom of Fig. 1.
Also in this case the first and last TP point of the
trail, yi and yi+4, correspond to increasing and de-
creasing close approach distance, respectively. Thus,
if the TP trace curve segment joins yi and yi+4 with-
out exceeding the distance dmax, then it must have
at least one point with minimum close approach dis-
tance. However, the behavior of the TP trace curve
cannot be approximated by a straight line and the
map between the confidence region for the initial con-
ditions x and the TP points y is essentially nonlin-
ear, because there is a fold line where the differen-
tial of the map x 7→ y is degenerate (Milani et al.
2005b). The close approach distance decreases to a
minimum, then increases again, but because the TP
trace curve ”turns back”. This phenomenon is called
resonant return.

A return is a trail with the additional condi-
tion that the VA forming it have experienced another
close approach between the times of the available ob-
servations and the times of the close approaches be-
longing to the trail. Among the returns there are
those such that the intermediate close approach is to
the same planet and has occurred near the same local
MOID point of the close approaches belonging to the
return (e.g., both near the ascending node for a high
inclination orbit). That implies the Earth is near the
same value of mean anomaly in the intermediate and
in the return encounter, i.e., the close approach oc-
curs at about the same date in different years. Also
the asteroid needs to be near the same anomaly to
be close to the MOID point along its orbit: the time
span ∆t between the two encounters needs to be close
to an integer multiple of the Earth’s orbital period
and to an integer multiple of the asteroid period, thus
the two orbits must be nearly resonant. This is the
motivation for the name ”resonant return” (Milani
et al. 1999).

We have developed an analytical theory, based
upon Öpik formalism for planetary encounters, de-
scribing in a qualitative (also in an approximate
quantitative way) the shape of the TP trace curves
associated to returns, in particular for resonant re-
turns (Valsecchi et al. 2003). This is possible
because there is a comparatively simple analytical
formula approximating the change in the asteroid
semimajor axis resulting from the intermediate en-
counter, as a function of the coordinates (u, θ, ξ, ζ).
Without going into long details, it is enough to point
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out that each intermediate encounter can generate as
many as four ”turning back points” in the TP trace
curves of successive encounters. Non-resonant re-
turns to the same planet (e.g., after a close approach
at the other node) and even encounters with another
planet can also generate turning points. Thus the
behavior of the bottom trail of Fig. 1 is by no means
exceptional, rather generic, and the principle of sim-
plest geometry cannot be used to exclude it. We con-
clude that the algorithms to find local minima of the
close approach distance for each trail must be able
to cope with this case, thus they must not assume
that the x 7→ y map is well approximated locally by
a linear map.

4.2 The algorithms to find the minimum close
approach distance

We have shown in the previous section that,
by assuming the principle of the simplest geometry,
each value of the LOV parameter σ belonging to a
segment (σh, σk) corresponds to a point of the TP
trace differentiable curve y(σ) joining the TP points
yh and yk. For each of these σ we can compute
the the distance squared to the CoM of the Earth
on the TP b2(σ) = y(σ) · y(σ) and its derivative
f(σ) = ∂b2/∂σ with respect to the LOV param-
eter σ. Then we can scan the set of TP points
yi, h ≤ i ≤ k to find the couples of consecutive
indexes i, i + 1 such that the signs of this derivative
are discordant f(σi) < 0 and f(σi+1) > 0 in such a
way that an elementary theorem of calculus ensures
there is at least one value of σ0 ∈ (σi, σi+1) such
that f(σ0) = 0. Moreover, the classical algorithm of
regula falsi can be used to find one such value of σ.

The difference with the procedure outlined in
Section 3.2 is in that no assumption needs to be done
on the direction and curvature of the TP trace curve.
Indeed, in the cases of resonant returns, the TP trace
curve may never cross the ζ = 0 line, because it
”turns back” before crossing it. Thus the minimum
distance may be much larger than the local MOID.
e.g., the two cases in Fig. 1 of the ”doubleton” and
of the resonant return can be handled without prob-
lems. In other cases the curve may turn back af-
ter crossing the ζ = 0 line, in which case we expect
a double minimum of the close approach distance.
These different cases need to be handled with an
adaptive algorithm, capable of identifying the sim-
plest geometry of the TP trace curve compatible with
the available sampling and to take the necessary ac-
tion, that is selecting additional sampling points to
be used as initial conditions for iterative procedures
to reach all local minimua (Milani et al. 2005b).

4.3 Reliability and completeness of impact
monitoring

Whenever one of the TP points y0 of local
minimum (in the close approach distance along the
LOV) is within the Earth’s impact cross section, a VI
is found, and we have a representative of the VI, that

is an explicitly computed set of initial conditions x0
such that they are compatible with the observations
and lead to a collision at a given date. Whether a
simpler algorithm, such as the one described in Sec-
tion 3.2, or the more robust algorithm of Section 4.2,
has been used does not matter: once found, the VI
representative is a proof that the collision can occur,
and the problem is how to associate an IP to the
VI. Linearization at y0 of some Gaussian probabil-
ity density is the only algorithm efficient enough to
be used in operational impact monitoring, although
targeted investigations with method similar to Monte
Carlo are possible and are used in especially difficult
cases, occurring when there is significant nonlinear-
ity in a neighborhood of the VI representative.

A more subtle case occurs when y0 is outside
the impact cross section, but the TP confidence el-
lipse computed by linearizing at x0 does contain col-
lisions. In this case an explicit representative of the
VI is not available; the linearization can be of ques-
tionable accuracy, especially when the width w of the
TP confidence ellipse is large. Both including and
excluding these cases from the list of VIs is unsafe.

We have developed, for the CLOMON2 im-
pact monitoring system, a method to confirm possi-
ble VIs by an iterative procedure which has shown
the capability to converge to a VI representative, in
most cases in which such a VI exists. It is based on
a modified Newton’s method, first proposed in Mi-
lani et al. (2000). If y0 is the point on the LOV TP
trace with minimum distance from the Earth, corre-
sponding to the initial condition x0, but |y0| > B,
we select a point y′

1 on the TP with |y′
1| = B, e.g.,

by moving radially. Then we find the point x1 in the
confidence region near x0 with the minimum penalty
among those projecting into y′

1 on the TP, using the
differential of the x 7→ y map at x0. Then the TP
trace g(x1) = y1 is computed, and it is not y′

1 be-
cause of the nonlinearity, but by iterating this proce-
dure convergence to a VI representative is possible.
The difficult point is defining a criterion to termi-
nate the above iterative procedure when convergence
is not achieved. Such ”divergence” should provide a
good indication that the intersection of the linear
confidence ellipse and the impact cross section was a
spurious VI; see Milani et al. (2005b) for details.

5. OPERATIONAL IMPACT
MONITORING

The impact monitoring software robots
CLOMON2 and SENTRY have been operational
since early 2002. In the years 2002 and 2003 this
setup has ”solved” more than 100 cases of asteroids
having VI, in the following sense. These VI cases
have been reported, the astronomical community has
taken action by performing follow up observations
until enough information was available to exclude
the possibility of impacts in this century. In most
cases this follow up would have taken place anyway,
but the warnings are far from useless, since in the
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same time span there have been 9 cases which have
been lost while still having VIs; however, these were
all small asteroids (< 100 m diameter), indicating
that the telescopes used for this targeted follow up
might have not been large enough. This good result
has also been due to the action of the Spaceguard
Central Node (SCN) in promoting the recovery cam-
paigns for VI cases9. Currently the asteroids found
to have possible impacts are several per week, and it
is expected that this rate will further increase when
the next generation asteroid surveys will be opera-
tional, starting in 2007.

In the most serious cases10 the two impact
monitoring systems cross-check their results before
announcing the existence of a VI: this procedure
takes typically just a few hours.

Since late 2004 two cases have been the most
significant sources of concern for the personnel of the
monitoring systems. (99942) Apophis has been on
the ”risk pages” of CLOMON2 and SENTRY since
December 2004, with an estimated IP peaking at
1/37 on December 27, 2004 and then declining as new
and more accurate observations were received. Now
the orbit is very well determined, also with radar ob-
servations, the IP for the remaining 2036 VI is low
but it is difficult to contradict this impact possibil-
ity because the optical observations are not accurate
enough to improve the orbit. 2004 VD17 has an or-
bit already observed over multiple oppositions and
its uncertainty does not grow very fast with time
because there are few and shallow close approaches.
There is a VI for 2102, again with not very high prob-
ability but difficult to be removed because the orbit
is already very good. These two cases have for the
first time raised the issue of planning for mitigation
action: knowing there is some risk does not solve the
problem, if the risk does not go away by follow up
observations.
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Pregledni rad po pozivu

Neki od asteroida i kometa sa puta-
ǌama koje seku putaǌu Zemǉe mogu da udare
u naxu planetu, pa je neophodno da budemo
u mogu�nosti da identifikujemo sluqajeve
opasno bliskih prilaza u narednih 100 godi-
na. Ova kontrola mora da se sprovede qim
se takav asteroid otkrije, da bi se obezbe-
dilo pra�eǌe i nova posmatraǌa koja mogu
da otklone mogu�nost udara, ili da, u naj-
gorem sluqaju, omogu�e preduzimaǌe zaxtit-

nih mera, ukǉuquju�i i eventualno skre-
taǌe asteroida sa sudarne putaǌe. Mate-
matiqki problem predvi�aǌa mogu�ih udara,
qak i onih sa vrlo malom verovatno�om,
rexila je naxa grupa u posledǌih neko-
liko godina. U ovom radu prikazujemo os-
nove teorije predvi�aǌa udara i razmatramo
kako se ona koristi u savremenim sistemima
za pra�eǌe asteroidnih udara u funkciji
u ovom trenutku, posebno CLOMON2 robota
Univerziteta u Pizi i Vaǉadolidu.
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