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SUMMARY: The main goal of this paper is to estimate the significance of ef-

fects the flow profile U0(z) induces on computed global oscillation spectra. We solve
numerically the eigenvalue problem for the described basic state configuration with
reference to solar conditions as an example of a typical star. Obtained results show
that the considered shear flows do not only affect the eigenfrequencies ω but they
also have an impact on spatial profiles of eigensolutions of linearized physical quan-
tities. Such flows may even allow for local amplification of perturbation amplitudes

at positions where the resonant Doppler condition ω = kU0(z) is satisfied. For typ-
ical subsonic flow speeds this Doppler resonant wave amplification can be effective
only in the case of the non acoustic gravity modes with sufficiently large horizontal
wavenumbers k.
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1. INTRODUCTION

It is well known that a star can exhibit various
types of bulk oscillations that are equivalent to he-
lioseismic modes observed on the Sun and seismic
modes of the Earth. If magnetic field effects are
excluded, these global oscillations are known to be
in three characteristic groups of eigenmodes: a set
of pressure driven acoustic p-modes, a single incom-
pressible surface f -mode and a set of gravity driven
g-modes. The p-modes are being observed on the
Sun and some of their frequencies can be precisely
determined with relative errors reaching 10−5.

All these modes are spatially localized and
have perturbation amplitude distributions with one
or more peaks located in the stellar interior. A thor-
ough overview on helioseismology and its applica-
tion in stellar diagnostics can be found in Gough and
Toomre (1991), Christensen-Dalsgaard et al. (1998)

and Christensen-Dalsgaard (1998).
Spectral properties of global oscillations de-

pend on physical parameters describing the chosen
stellar model. This includes geometrical structuring
of the interior and atmosphere of a star, the related
temperature and density profiles, chemical compo-
sition and kinematic state of the ambient plasma,
and possible magnetic field distribution. Among im-
portant stellar features affecting global modes are
also macroscopic motions of convective and merid-
ional flows often encountered at stellar surface re-
gions. In the case of the Sun, effects of such mo-
tions on global eigenspectra have been extensively
treated so far. For example, Murawski and Roberts
(1993a,b), Murawski and Goossens (1993) studied
the f mode by solving an extended dispersion re-
lation which involves random horizontal flows in a
plane-parallel model of the upper layers of the Sun
while Pranab et al. (1995) considered other velocity
profiles. Stein and Nordlund (1998) numerically sim-
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ulated the granulation near the solar surface, while
Rosenthal et al. (1999) applied hydrodynamical sim-
ulations in two computational models: the reduced-
gamma model and the gas-gamma model using the
mixing-length theory.

In this work, our attention is focused on pat-
terns of spatially localized horizontal flows and their
influence on stellar global seismic modes. In par-
ticular, we are interested in achieving a better in-
sight into sensitivity of modal eigenfrequencies on
flow profiles alone. The model we consider assumes a
gravitationally stratified gaseous structure composed
of three distinct layers with prescribed temperature
distributions, simulating three typical stellar regions:
the interior, overlaying convection layer with a local-
ized nonuniform flow U0 beneath the stellar surface,
and a static atmosphere-corona above it. Physical
quantities of the basic state are taken z-dependent
in the Cartesian geometry, with the z-axis oriented
along the gravity vector. This paper is thus an exten-
sion of our previous studies of global modes (Vanlom-
mel and Čadež 1998 2000, Vanlommel and Goossens
1999) related to purely static configurations.

We take now the macroscopic flow velocity
to be horizontal with the speed U0(z) varying and
changing its sign in the vertical direction z which re-
sembles motion patterns of elongated horizontal con-
vective cells in the Cartesian geometry. The analyti-
cal expression for the model velocity profile U0(z) is
chosen as to allow a convection zone to be simulated
by a pile of elongated convective cells with conserved
total mass fluxes. The flows are taken in opposite
directions at the horizontal cell edges but retain the
same orientation through the boundary between ad-
jacent cells. Free parameters specifying such a flow
pattern are taken to be the speed c normalized to
some typical value at the surface z = 0, the number
n of layers of piled convective cells within the con-
vection layer and the parameter p determining the
distribution of the flow speed inside the convective
cell.

For a basic state prescribed by a chosen refer-
ence set of related physical parameters, we solved the
eigenvalue problem numerically by utilizing bound-
ary conditions requiring the energy density of lin-
ear perturbations to vanish at large |z|, and the
vertical displacement ξz(z) caused by fluid motions
and the pressure perturbation P (z) to be continuous
at boundaries separating the layers. The resulting
modal eigenfrequencies ω and eigensolutions ξz(z)
and P (z) show the dispersion curves and localiza-
tion domains of different global modes with horizon-
tal wavelength λ = 2π/k taken along the direction
of the flow. The obtained dispersion diagram (k, ω)
shows discrete parabolic lines in domains bounded
by cut-off curves. The numerical procedure was per-
formed for ranges of flow parameters which yields
the eigenfrequency dependence on flow characteris-
tics. This approach of relating eigenfrequency varia-
tions to changes in the basic state parameters is an
alternative to the methods of inverse techniques (for
example Gough and Toomre 1983, Basu et al. 2000
and references therein) based on the variational prin-
ciple and knowledge of kernels which are functions

of the reference basic state and eigensolutions. Our
numerical method of solving the eigenvalue prob-
lem for a sequence of basic states can be applied
to any z−dependent basic state configuration pre-
scribed initially.

As to the applicability of the Cartesian geom-
etry in our analysis, it is valid only for perturbations
of a sufficiently small wavelength λ (R∗ � λ) when
the effects of stellar sphericity are unimportant.

The paper is organized as follows: the unper-
turbed equilibrium model is described in Section 2,
the basic equations for linear perturbations and the
eigenvalue solutions are found in Section 3, the nu-
merical results with plots showing frequency shifts of
global modes when the flow parameters are varied,
can be seen in Section 4 while Section 5 contains a
discussion of results and conclusions.

2. MODEL OF UNPERTURBED STATE

Following the approach of our previous pa-
per (Vanlommel and Čadež 2000, hereafter VC2000),
we consider a basic stellar model composed of three
nonuniform regions in the Cartesian geometry: an
isothermal atmosphere (z ≤ 0), a convection zone
of thickness W (W ≥ z > 0) with a constant adia-
batic temperature gradient, and a convectively stable
stellar interior (z ≥ W ) with a constant and sub-
adiabatic temperature gradient. Stratification of the
medium is thus along the uniform gravity ~g = gêz
in the z−direction. Nonuniform horizontal fluid mo-
tions ~v0 = U0(z)êx are assumed to exist in the con-
vection layer while the fluid is at rest elsewhere.

The stellar plasma is taken as an ideal and
fully ionized gas composed of protons and electrons,
initially in a stationary equilibrium:

∇p0 + ρ0(~v0 · ∇)~v0 = ρ0~g (1)

with the z−axis oriented toward the stellar interior.
As ρ0(~v0 ·∇)~v0= 0 for horizontal z−dependent

motions, the flow patterns we consider do not affect
the initial hydrostatic balance in which case Eq. (1)
reduces to the expression for a static equilibrium as
used in VC2000. The following basic state tempera-
ture and density profiles are therefore assumed:

T0(z) = Tc



















τ, z < 0

1 + Γ
z

H
, 0 ≤ z ≤ W

ci + AΓ
z − W

H
, z ≥ W

(2)

with

ci ≡ 1 + Γ
W

H
and Γ ≡ (γ − 1)/γ.

as shown schematically in Fig. 1. Here, A is a dimen-
sionless parameter determining the sub-adiabatic
temperature gradient in the stellar interior ranging
between A = 0 (the isothermal temperature pro-
file) and A = 1 (the adiabatic temperature profile);
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τ ≡ Ta/Tc where Ta = Tcτ and Tc are temperatures
of the stellar atmosphere (the corona) and the top
of the convection zone respectively; Ti = ciTc is the
temperature at the transition from the convection
zone to the stellar interior (at z = W ). The remain-
ing quantities have their standard meanings.

Fig. 1. Schematic temperature profile in the at-
mosphere (the corona), convection zone and stellar
interior.

The density distribution ρ0(z) follows from
Eqs. (1)-(2) as:

ρ0 = ρc























(

ci
mc + AΓ

z − W

H

)mi

, z ≥ W

(

1 + Γ
z

H

)mc

, 0 ≤ z ≤ W

1
τ ez/τH , z < 0

(3)

where ρc is a reference density at z = 0 while mc and
mi, known as polytropic indices, are given by:

mc ≡
1

γ − 1
and mi ≡

1

AΓ
− 1.

In our one-dimensional approach, all macro-
scopic motions are taken to be horizontal like in the
case of elongated convective cells whose side edges
(with vertical motions) are far apart from each other
in comparison with the wavelength of perturbations
and to the thickness W of the convection layer.
Flows U0(z) are taken to cause no net mass flux Φm

through the normal cross-sectional plane of any in-
dividual cell:

Φm ≡

∫ W/n

0

ρ0(z)U0(z)dz = 0. (4)

The integer parameter n = 1, 2, ... denotes the num-
ber of stacked convective cells within the convection
layer of thickness W .

A suitable model function describing such a
flow pattern can be taken in the following form:

U0(z) =
cU0ρc

ρ0(z)

[

cos
nπz

W

]2p+1

. (5)

The parameters p = 1, 2, ... and c = 0, 1, 2, ... (Fig.
2) determine respectively: the flow concentration at
horizontal cell boundaries, and scaling of some refer-
ence flow speed U0 at z = 0.

In a special example that follows, we shall take
the stellar basic state parameters relevant to solar
conditions.

3. EIGENVALUE PROBLEM FOR
LINEAR PERTURBATIONS

The described basic state is subject to isen-
tropic linear harmonic perturbations having fre-
quency ω and the horizontal wavenumber k which
can also be expressed in terms of the degree l by
k2 = l(l + 1)/R2

∗ (R2
∗≡ R� = 696 Mm - the So-

lar radius). To remain within the applicability of
the Cartesian geometry, the wavelength λ ≡ 2π/k
must be sufficiently small as to satisfy the condition
R� � λ which is equivalent to l � 2π ≈ 6. In this
case, the degree l and the horizontal wavenumber k
are mutually related as l ≈ kR�. These perturba-
tions are governed by standard equations of fluid dy-
namics which reduce to two linear equations for the
vertical displacement ξz and the perturbed pressure
P :

D
dξz

dz
= C1ξz − C2P,

D
dP

dz
= C3ξz − C1P.

(6)

The coefficients D, C1, C2 and C3 are given by

D(z) = ρ0(z)v2
s (z)Ω2(z),

C1(z) = −ρ0(z)gΩ2(z),

C2(z) = Ω2(z) − ω2
s(z),

C3(z) = ρ2
0(z)Ω2(z)v2

s(z)
[

Ω2(z) − ω2
BV(z)

]

.

(7)

where Ω, ωs and ωBV are the Doppler shifted wave
frequency ω, the sound frequency and the Brunt-
Väisälä frequency respectively, defined as:

Ω ≡ ω − kU0(z), ω2
s ≡ v2

sk2 and

ω2
BV(z) ≡ g

[

(γ − 1)
g

v2
s(z)

−
d

dz
ln T0(z)

]

.
(8)

The medium is locally stable regarding the convec-
tive instability if ω2

BV(z) > 0. In the basic state we
consider, this is true in the solar corona and interior
while the unstable convection zone tends to estab-
lish approximately the adiabatic temperature gradi-
ent yielding ω2

BV(z) = 0.
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Fig. 2. Schematic representation of flow profiles U0(z) for different n, c and p: The upper figures illustrate
a single cell and a stack of two cells, n = 1 and n = 2, respectively. The lower figures show variation of the
normalized flow speed with z (left) and the distribution of the flow concentration within a cell determined by
the parameter p (right) for n = 4.

Fig. 3. Obtained dispersion curves for c = 1, n = 1 and p = 0 showing splitting of basic acoustic modes
arising from the layered structure of the unperturbed model. The slanted and horizontal solid lines are the
upper and lower cut-off frequency curves related to the atmosphere and interior respectively. The dashed line
below the lower cut-off is the resonant line ν = lU0(0)/(2πR∗) (k ≈ l/R∗ for l � 6). An expanded view of
the cut-off and the resonant line is shown in the lower plot.
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Eqs. (6) are solved analytically in the coro-
nal region and in the solar interior, and numerically
in the convection zone. The obtained solutions are
matched through the boundary conditions that re-
quire continuity of ξz and P at z = 0 and z = W .
As global modes are spatially localized, the solutions
of Eq. (6) have also to satisfy the boundary condi-
tion at infinity requiring the energy density of per-
turbations to vanish at |z/H | � 1 (far in the corona
and deep in the interior). The resulting analytical
solutions are exponentially decreasing functions of z
in the isothermal corona (z < 0) and a combination
of two confluent hypergeometric functions U(z) and
M(z) (Abramowitz and Stegun 1965) in the subadi-
abatic solar interior (z > W ).

The eigenvalue problem now reduces to find-
ing pairs of eigenvalues (ω, k) for which the global
eigensolutions satisfy the required boundary condi-
tions at z = W and z = 0. The full description
of the corresponding numerical scheme can be found
in our earlier paper (Vanlommel and Čadež 1998)
in which static basic states were studied. Now, the
presence of a flow introduces some new features to
eigensolutions: in addition to shifts in eigenfrequen-
cies, a nonuniform flow may cause a local resonant
instability at z = zr where Ω(zr) = 0. At this lo-
cation, Eqs. (6) have a second order Doppler-type
singularity in which a phase matching or resonant
interaction between the global mode and the flow
takes place: ω = kU0(zr). Consequently, an instabil-
ity develops when the amplitude of the mode grows
in time by gaining energy from the flow. As the
linear amplitudes grow, the neglected nonlinearities
and plasma dissipations become important and can-
not be ignored anymore, which eventually leads to
a saturation of growth. The linear approach there-
fore only points out the fact that a resonance exists
where the linear solutions diverge. A full analysis
of eigensolutions in the vicinity of a resonance re-
quires a nonlinear approach and taking dissipations
into account. In our case, the divergent linear solu-
tions can easily be obtained in an asymptotic form in
the domain z ≈ zr where Eqs. (6) reduce to a single
equation:

d

dz

[

(z − zr)
2 dξz

dz

]

+
ω2

BV(zr)

(U ′
0)

2 ξz = 0, (9)

with U ′
0 ≡ dU0(z)/dz|z=zr

6= 0 and ω2
BV(zr) ≥ 0 in

the considered basic state,. Eq. (9) has two types of
solutions depending on the sign of |U ′

0| − 2ωBV(zr):
If |U ′

0| ≥ 2ωBV(zr), the solution is

ξz = a1|z − zr|
(µ−1/2) +

a2

|z − zr|(µ+1/2)
(10)

with

µ =

[

(U ′
0)

2
− 4ω2

BV(zr)
]1/2

2|U ′
0|

.

If |U ′
0| ≤ 2ωBV(zr), the solution is

ξz = a1
cos(µ1 ln |z − zr|)

|z − zr|1/2
+

+ a2
sin(µ1 ln |z − zr|)

|z − zr|1/2
(11)

where a1 and a2 are integration constants and µ1 ≡
|µ|. In either case, the solution to the linear vertical
displacement ξz diverges at z = zr if dissipations and
nonlinearities are ignored.

4. NUMERICAL RESULTS

To make the effects of the flow more notice-
able and comparable with results of a static case,
we choose the same typical values for the basic state
parameters as in VC2000: Tc = 4170K for the tem-
perature at the top of the convection zone, the tem-
perature ratio at z = 0 is τ = 400 and the subadia-
batic temperature gradient is determined by A = 0.8
and the depth of the convection zone is W = 0.3 R�.
This basic state is now extended by a macroscopic
plasma flow in the convection zone whose speed pro-
file is given by Eq. (5) with U0 = 2000 m/s and
variable parameters n, p and c. A numerical solution
of the eigenvalue problem for linear perturbations in
such a basic state yields dispersion curves ω = ω(l)
for global modes: the acoustic p-mode, the gravity
g-mode, and the surface f -mode, shown in Fig. 3.
As seen, the diagram of dispersion curves is rather
complex as additional branches of dispersion curves
appear due to the fact that the considered basic state
is composed of individual layers separated by sharp
boundaries which eventually introduces new modes.

The inclusion of macroscopic flows into the
convection zone results into frequency shifts of the
whole pattern of dispersion curves. Details of how
these shifts depend on the flow parameters c, p and
n are shown in Figs. 4-6 respectively for eigenfre-
quencies related to the degree l = 100. The influence
of the flow is comparable for both the acoustic and
gravity modes.

According to Fig. 4, the shift of the refer-
ence frequency (related to l = 100) grows almost
linearly with the flow intensity parameter c for the
f− and p1−mode if c increases from 0 to 1. This
tendency holds also for acoustic modes of higher or-
der. We can also notice that the related growth rates
increase with the modal order i: the frequency of the
pi−mode is shifted more than the frequency of the
pi−1−mode; the same is true also for the gi−modes.
A variation of the flow profile parameter p causes the
reference frequency to decrease with p for the f− and
p1−modes, as seen in Fig. 5. The shapes of curves
∆ν = ∆ν(p) showing the negative frequency shifts
for pi− and gi−modes, depend on the modal order
i in a more complex way. Analogous features are
also observed in Fig. 6 if the number of piled cells
n is varied. The frequency shifts are negative and of
several times larger magnitude than those caused by
varying p within the chosen interval.
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Fig. 4. Frequency shifts ∆ν = ν(c)− ν(c = 0) at different values of the flow parameter c. Other quantities
are fixed: n = 1, p = 0 and l = 100.

Fig. 5. Frequency shifts ∆ν = ν(p)−ν(p = 0) at different values of the flow parameter p. Other parameters
are fixed: c = 1, n = 1 and l = 100.

Fig. 7 shows the solution for the perturbed
pressure in the convection zone (0 ≤ z/H ≤ 2145)
as a function of z/H for the f , p1 and the first three
g−modes. The eigensolutions are not plotted in the
corona nor in the interior where their amplitudes are
negligible in comparison with those in the convection
zone where the modes are predominantly present.

As already said, the nonuniform horizontal
flows also allow for a Doppler type singularity where

the flow is in resonance with global modes. For typ-
ical solar conditions, this can occur at sufficiently
large degrees l where the flow term kU0(z) ex-
ceeds the lower cut-off frequency for g−modes. As
|U0(z)| ≤ |U0(0)| in the considered model flow pro-
file, we plot (the lower graph in Fig. 3) the reso-
nant line ν ≡ ω/2π ≈ lU0(0)/(2πR�) as a boundary
separating the domain with allowed resonances (fre-
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quencies below the resonant line) from the domain in
which the resonance cannot occur (frequencies above
the resonant line). Consequently, the low frequency
gravity waves can resonate with the flow if their fre-
quency ν exceeds the lower cut-off and satisfies the
condition ν ≤ U0(0)/(2πR�) at the same time. This

can take place only after the resonant line crosses the
lower cut-off at sufficiently large degree l as seen in
the lower plot in Fig. 3. As to the acoustic modes,
their frequencies are too high and they cannot get
into resonance with subsonic flows - their dispersion
curves do not intersect the kU0(0)-line.

Fig. 6. Frequency shift ∆ν = ν(n)−ν(n = 0) at different values of the flow parameter n. Other parameters
are fixed: c = 1, p = 0 and l = 100.

Fig. 7. Eigensolutions for the dimensionless pressure perturbation P (z/H) for the f , p1 and the first three
g−modes with l = 100. The flow parameters are c = 1, n = 1 and p = 0.
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5. CONCLUSI0NS

The main object of this study is to estimate
the effects of large scale horizontal motions on stellar
global modes for models discussed in our earlier pa-
pers (Vanlommel and Čadež 1998, 2000, Vanlommel
and Goossens 1999).

The eigenfrequency spectra are computed
from boundary conditions applied to localized so-
lutions of linearized fluid dynamics equations at
boundaries z = 0 and z = W separating the at-
mosphere (the corona) from the convection zone and
the convection zone from the interior respectively. In
the considered numerical example of the basic state,
we chose physical parameters relevant to the Sun.

The obtained eigensolutions for the vertical
displacement ξz and pressure perturbation P are lo-
calized mostly below the surface z = 0 while the
precise locations of their extrema depend on charac-
teristics of the flow profile.

The computed eigenspectra experience a typi-
cal Sturmian behaviour for the pi modes and an anti
Sturmian for the gi modes. We point out that if the
Cartesian geometry is fully applicable (l � 6) as in
our case, the existence of modes with different order i
is not a consequence of the spherical geometry, they
arise from the linear temperature profile in the re-
gion below the convection zone, and from properties
of solutions given in terms of confluent hypergeomet-
ric functions.

Magnitudes of frequency shifts are of the order
of 10−2 to 10−1 µHz as presented in Figs. 4-6. The
parameter c that scales the speed of the flow, has
the most pronounced effect on eigenfrequency varia-
tions as also found by Gough and Toomre (1983) by
applying a variational method. Changes in c cause
larger frequency shifts than variations of the remain-
ing two parameters p and n related to the profile of
the flow and to the number of piled convective cells
respectively.

If the flow parameters are c = 1, p = 0 and
n = 1, the relative frequency shift is 1.5 · 10−4 for
the g1 mode with l = 100, and 5 · 10−5 for the p1
mode. This shift is of the order of the observational
accuracy for the solar p modes that reaches 10−5.

Another consequence of nonuniform flows in
the convection zone is a possibility for a Doppler
resonance occurring when the condition Ω(ωr, l) =
0 is satisfied. The limiting resonant curve ν =
lU0(0)/(2πR�) is plotted in Fig. 3. In our model, the
resonance can happen only for high degree g modes
with l > 600 when these modes can resonantly be
amplified by nonuniform horizontal flows in the con-
vection zone. Consequently, such a resonant wave
amplification of g−modes arising from nonuniform
subphotospheric flows may lessen the difficulties of
their observational detection at the solar surface.

Acknowledgements – V. M. Čadež acknowledges the
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Razmatra se uticaj lokalizovanih ho-
rizontalnih sub-fotosferskih proticaǌa ra-
zliqitih profila na frekvencije seizmiqkih
globalnih modova zvezda i Sunca. Model
pretpostavǉa ravnu geometriju sa z−osom us-
merenom du� vektora gravitacije ka unu-
traxǌosti zvezde. Sredina je idealan gas i
ima vixeslojnu strukturu koja simulira ti-
piqne oblasti zvezde: ǌenu unutraxǌost, kon-
vektivnu zonu sa proticaǌem i atmosferu –
koronu. Svaka od tih oblasti ima svoj line-
arni profil temperature, gustine i pritiska
i nalazi se u staǌu hidrostatiqke ravnote�e.

Za takvo osnovno staǌe rexen je sop-
stveni problem za linearne perturbacije
koje su harmonijske u vremenu i u hori-

zontalnom pravcu dok im amplitude zavise
od promenǉive z. Analitiqka rexeǌa u
vidu hiper-geometrijskih funkcija kao i nu-
meriqka rexeǌa za oblast postojaǌa proti-
caǌa datog profila, zadovoǉavaju graniqne
uslove pod uslovom da je zadovoǉena dis-
perziona jednaqina koja povezuje frekven-
ciju i horizontalni talasni broj i koja se
odre�uje numeriqkom metodom. Pokazano je
postojaǌe Doplerovske rezonance koja dovodi
do linearne nestabilnosti i amplifikacije
amplituda perturbacija. U sluqaju Sunca,
takva rezonanca bi mogla da pove�a ampli-
tude odre�enih talasa gravitacionih modova
zahvaǉuju�i qemu bi mogli lakxe da se detek-
tuju.
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