
Serb. Astron. J. } 171 (2005), 1 - 10 UDC 523.947–337
DOI: 10.2298/SAJ0571001C Invited review

MODELING STATIC MAGNETIC FIELD

STRUCTURES IN SOLAR CORONA

V. M. Čadež
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SUMMARY: We give an overview of procedures to recover and simulate typical
coronal static magnetic field topologies from given boundary data on the photo-
sphere. Relatively simple analytical treatments allow for solutions representing
magnetic structures that are invariant in one coordinate, and satisfying prescribed
boundary conditions. Starting from elementary active regions in a form of local-
ized sources/sinks of magnetic field lines on the photospheric level, we set up vari-
ous composed boundary conditions which yield complex magnetic structures in the
corona above.
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1. INTRODUCTION

Numerous observations of the solar corona
performed in particular spectral lines of X-ray and
EUV emission show that its temporal and spa-
tial structures are dominated by the magnetic field
emerging through the photosphere and expanding
out into the corona and further into the interplan-
etary space and the entire heliosphere. Such ob-
served coronal structures, however, provide no in-
formation on magnetic field strength which makes
the determination of magnetic field topologies in the
corona a primary step in a process of understand-
ing the physics of coronal features and phenomena
such as flares and coronal mass ejections. Unfor-
tunately, direct observations and measurements of
coronal magnetic fields are very difficult, practically
impossible, at least at the level and capabilities of ex-
isting observational methodologies based on Zeeman
spectral line splitting and on characteristics of light
polarization induced by the ambient magnetic field
the observed radiation is normally passing through.
The main difficulties arise from a very high coro-
nal temperature which broadens spectral lines orders
of magnitude above the Zeeman splitting, and from

the fact that coronal lines are optically thin which
makes them difficult for interpretation (Wiegelmann
et al. 2005). Another possibility to estimate inten-
sities of coronal local magnetic fields is by the gy-
roresonance radio emission in centimeter wavelength
emitted from active regions on the Sun which is a de-
veloping techniques yet far from being sufficient and
fully reliable.

On the other hand, the photospheric and also
cromospheric magnetic fields are much easier to mea-
sure. The contemporary vector magnetographs pro-
vide sufficient data on the linear and circular polar-
ization of light to recover all three magnetic vector
components on the photosphere. These photospheric
magnetic field distributions are now used as bound-
ary conditions in computations of adjacent coronal
magnetic field topologies and their comparisons with
shapes of optically observed structures such as mag-
netic arcades, loops, streamers, canopies etc. How-
ever, this problem of extrapolation of photospheric
magnetic fields into the corona is neither simple nor
straightforward as we do not know which type of
magnetic field we are really dealing with, i.e. which
equations we have to solve. Then, does the boundary
condition of the magnetic field on the photosphere
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suffice for a unique solution in the corona with a
proper asymptotic behaviour at infinity? What are
contributions of electric currents in the corona to its
magnetic field distribution? Such questions cannot
be answered in a simple way which leaves the door
open to approximations and a priori assumptions in
making physical models of the system photosphere-
corona to compute coronal magnetic fields. Thus,
Petrie and Neukirch (2000) use the Green’s function
method for a class of 3D magnetohydrostatic equi-
libria arising from a combination of force-free and
non force-free electric currents while Yan and Saku-
rai (2000) and Yan (2003) are utilising a different
method of solving a boundary integral equation nu-
merically. Amari et al. (1999) included additional
shear and twist of magnetic field lines in their compu-
tational modeling of coronal fields, Lee et al. (1999)
use also data from radio observations for a better
estimate of the nature of coronal magnetic fields.
Wang et al. (2000) developed a numerical technique
to study developments and evolutions of particular
magnetic field structures in the corona such as quasi-
separatrix layers where magnetic reconnections can
take place and promote chromospheric and coronal
heating. Similarly, Yiao et al. (1997) recovered the
coronal magnetic field over an active region in the
force-free approximation. Various numerical meth-
ods involving Legendre polynomial expansions, solar
wind simulations and corrections of magnetograph
data due to saturation were discussed a long time
ago by Altschuler and Newkirk (1969).

Magnetic fields of the solar corona have gen-
erally very complex structure depending on the solar
activity cycle. Often, however, they take shapes of
arcades and loops emerging from the photosphere,
penetrating through the coronal medium and sink-
ing into the photosphere again. Observational data
indicate large spatial scales of such magnetic struc-
tures and their stationarity over comparatively long
time intervals. In this paper, we derive and analyze
analytical expressions that can be used for modeling
coronal magnetic fields if the magnetic field poten-
tial, also known as the flux function, is initially given
on the photospheric plane (Lothian and Browning
1995). Such a boundary condition can, in principle,
be related to observational data (Sakurai 1989, Yan
and Wang 1995).

The paper is organized as follows: an intro-
duction into the coronal magnetic field computations
is given in Chapter 1, a magneto-hydrostatic (MHS)
equilibrium assuming invariance in one coordinate
in the Cartesian geometry is discussed in Chapter 2
while Chapter 3 deals with low plasma β, or force-
free, magnetic field configurations. Chapter 4 con-
tains examples of complex potential magnetic field
configurations resulting from combinations of indi-
vidual localized active regions, Chapter 5 tackles the
problem of derivation of 3D force-free coronal mag-
netic fields from magnetic vector data on the photo-
sphere, and some conclusion and remarks are found
in Chapter 6.

2. STATIC EQUILIBRIUM - 2.5D
CARTESIAN GEOMETRY

MHS equilibria are practically impossible to
be treated analytically in general 3D configurations
due to insurmountable mathematical difficulties. In
such cases, only lengthy numerical procedures involv-
ing various computational techniques can yield sat-
isfactory results. However, to obtain a better insight
into the background physics of the problem and to
understand its governing processes it is desirable to
handle the problem also by some analytical means.
This usually requires introduction of certain simpli-
fications to make mathematical analyses doable but
then a care has to be taken about limitations in ap-
plicability of results obtained in such a way.

In this sense, we shall simplify the model of a
general magneto-hydrostatic equilibrium by assum-
ing its spatial dependence to be 2D, say dependent
on two variables x and z taken in the horizontal and
vertical direction respectively. At the same time, the
magnetic field may have all three components, i.e.
it is treated in 3D. Consequently, such a basic state
configuration is y-invariant and can be looked at as
a 2.5 dimensional structure. This approach (Eden-
strasser 1980) allows us to introduce numerous ana-
lytically obtained magnetic field structures that can
be relevant in modeling observational features com-
monly seen in the solar corona.

The equilibrium of the considered y-invariant
(∂/∂y = 0) basic state is described by the MHS equa-
tion:

1

µ0
(∇× ~B) × ~B −∇p − ρg∇z = 0 (1)

where µ0 = 4π 10−7 H/m is the magnetic permeabil-
ity of free space.

The magnetic field ~B ≡ (Bx, By, Bz) can be
split into two components, the perpendicular and the
parallel, with respect to the y-axis of invariance:

~B = ~B⊥ + By êy and ~B⊥ ≡ (Bx, 0, Bz). (2)

The perpendicular component ~B⊥(x, z) can further
be expressed in terms of the related magnetic vector

potential ~A ≡ (0, A(x, z), 0) as:

~B⊥ = ∇× ~A = ∇A × êy (3)

implying
~B⊥ · ∇A = 0 (4)

or A=const. along the field lines of the perpen-

dicular magnetic field ~B⊥. In other words, these
field lines are curves whose analytical expressions are
A(x, z)=const.

Considering the expressions (2) and (3), the
MHS condition (1) takes the following form:
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( ~B⊥ · ∇By)êy − By∇By −
(

∇2A
)

∇A

−µ0∇p − µ0ρg∇z = 0
(5)

or, in components taken along and perpendicular to
the y-axis respectively:

~B⊥ · ∇By = 0, (6)

µ0∇p = −By∇By −
(

∇2A
)

∇A − µ0ρg∇z (7)

Substituting Eq. (3) into Eq. (6) one gets:

(∇A ×∇By) · êy = 0. (8)

Since êy · ∇A = 0 and êy · ∇By = 0 according to the
assumed y-invariance, the above relation (8) requires
∇A ×∇By = 0 indicating the collinearity of vectors
∇A and ∇By meaning that:

∇By =
dBy

dA
∇A i.e. By = By(A) ≡ Fy(A). (9)

The magnetic field component By is therefore an
arbitrary function Fy of only one variable A, and
has to be prescribed as the initial condition. As
pointed out, the quantity A = A(x, z) defines

field lines A=const. of ~B⊥ in the (x, z)-coordinate
plane if viewed in 2D. Looking in 3D and tak-
ing the y−invariance into account, the relation
A(x, z) =const. represents cylindrical surfaces along

the y−axis while the field lines of ~B⊥ are cross-
sections of cylindrical surfaces A(x, z) =const. and
planes y =const. The property By = Fy(A) further
implies that a fixed magnetic field component By has

to be added to the field ~B⊥ along its field lines on
the cylindrical surface A(x, z) =const. to obtain the

total magnetic field ~B. The resulting field lines of
~B remain therefore on cylindrical surfaces A =const
but they are not sections with the y =const. planes
anymore. They are sheared by the amount of the
added magnetic field component By = Fy(A).

Now, Eq. (7) becomes:

∇p = − 1

µ0

(

∇2A +
d

dA

F2
y

2

)

∇A − ρg∇z. (10)

Thus, the spatial distribution of the pressure field
p(x, z) is given by p = p(A, z) and one can write the
following expression for the pressure gradient:

∇p =
∂p

∂A
∇A +

∂p

∂z
∇z. (11)

A comparison of the two expressions for ∇p, i.e. Eqs.
(10) and (11), yields:

∂p

∂A
= − 1

µ0

(

∇2A +
d

dA

F2
y

2

)

, (12)

∂p

∂z
= −ρg. (13)

Eq. (13) can easily be integrated over the vari-
able z if the considered plasma is assumed to obey
the perfect gas law p = ρRT (R is the individual
gas constant for a specific gas composition) and if
the temperature profile T (x, z) is a known function
initially prescribed. Taking the simplest example of
a uniform temperature T ≡ T0=const, we get from
Eq. (13):

p ≡ p(A, z) = p0(A)e(−z/H) (14)

where p0(A) is the boundary value for the pressure
distribution on magnetic field lines A(x, z) =const.
at z = 0 and H ≡ RT0/g. Inserting Eq. (14) for
p(A, z) into Eq. (12) we obtain the final equation for
the potential A = A(x, z):

∇2A +
d

dA

[

F2
y (A)

2
+ µ0p0(A)e(−z/H)

]

= 0. (15)

As one can see, Eq. (15) contains two quan-
tities Fy(A) and p0(A) that we are free to specify
according to needs of the model under consideration.
Once the solution of Eq. (15) for A(x, z) is obtained,
we readily derive the final expressions for the total

magnetic field ~B(x, z) from Eqs. (2) and (3) as:

Bx(x, z) = −∂A

∂z
,

By(x, z) = Fy(A),

Bz(x, z) =
∂A

∂x
,

(16)

and the pressure p(A, z) from Eq. (14). As for
the density ρ, it follows from the perfect gas law:
ρ(A, z) = p(A, z)/RT0 with T0 assumed uniform in
this particular example.

3. LOW PLASMA – β MAGNETIC
FIELD CONFIGURATIONS IN 2.5D

Many coronal magnetic field structures which
remain in quasi-static equilibria over comparatively
long time spans have also a typical property of be-
ing characterized by very large magnetic Reynolds
numbers Rm (1010 and more) arising mostly from ex-
tremely high electrical conductivity σ of the coronal
plasma (typically σ ∼ 106 S/m) and large geometri-
cal length-scales of magnetic structures (typical sizes
L ∼ 107m). In such cases, the effects of magnetic
diffusivity become negligible within the life-time of a
magnetic structure. Furthermore, the thermal pres-
sure p of the coronal plasma is generally found much
smaller than the corresponding magnetic pressure
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pm ∼ B2 which allows for the low plasma-β approx-
imation to be applied which significantly simplifies
analytical treatments. Namely, if 1 � β ≡ p/pm the
magnetic forces dominate both the thermal pressure
gradient force and gravity force meaning that con-
dition (1) for the total MHS balance is practically
satisfied by the equilibrium of magnetic forces only
and Eq. (1) reduces to a much simpler expression

(∇× ~B) × ~B ≈ 0 (17)

for a force-free magnetic field. Such force-free mag-
netic fields are widely utilised in modelings of coronal
field structures (Levine and Altschuler 1974, Aly and
Seehafer 1993). In this case, Eq. (15) for A reduces
to a Grad-Shafranov type of equation:

∇2A +
d

dA

[

F2
y (A)

2

]

= 0 (18)

if the y−invariance is assumed.
Eq. (17) for a force-free magnetic field in-

dicates the alignment of ~B with the current ~j =

∇× ~B/µ0 which can be written as

∇× ~B = α ~B (19)

where the proportionality factor α is some scalar
function of spatial coordinates. The physical sig-
nificance of α can easily be seen if the expressions
(2) and (3) are substituted into Eq. (19) whose
y−component then reduces to:

α =
dFy

dA
≡ dBy(A)

dA
(20)

with Eq. (18) taken into account. The obtained
relation (20) indicates α = α(A), i.e. that α too
is constant along the field-lines of the total mag-
netic field as they are laying on cylindrical surfaces
A(x, z) =const. Also, α is not an arbitrary function,
it is determined by the choice of By = By(A).

Eq. (20) shows that the force-free magnetic
fields given by Eq. (19) have all three components
different from zero with By 6=const. if α 6= 0. In
a special case of α = 0, corresponding to the well
known class of current-free or potential magnetic
fields, the magnetic field component By is constant
in space: By = c0=const.

To obtain the magnetic field components Eq.
(16), we have to solve Eq. (18) for A(x, z) with
prescribed boundary conditions at the z = 0 plane.
This equation is evidently nonlinear due to the term
Fy(A) and it cannot be solved analytically in its gen-
eral form. However, there exist some special possibil-
ities allowing for instructive analytical solutions that
can easily be derived for different types of magnetic
field. Thus, choosing:

Fy(A) = c0 =⇒ α = 0,
Fy(A) = c1A =⇒ α = c1,
Fy(A) = c2A

2 =⇒ α = 2c2A,
(21)

one obtains a potential magnetic field, a linear, and
nonlinear non potential force-free field respectively.
Here, c0,1,2 are constants to be defined according to
requirements of the considered model.

In what follows, we are going to study poten-
tial magnetic field configurations in more details and
show the results for some typical examples of bound-
ary conditions.

4. POTENTIAL MAGNETIC FIELD
CONFIGURATIONS IN 2D

As already mentioned, a potential magnetic
field is current-free meaning that α = 0 in Eq. (19).

The By component of ~B is then constant equal to c0

as indicated by Eqs. (20)-(21). To simplify the prob-
lem without loosing much of its generality, we shall
take By = 0 which makes the magnetic field topol-
ogy 2D with two magnetic field components Bx and
Bz, and magnetic field lines in the (x, z)-plane given
by the family of curves A(x, z) =const (Oliver et al.
1999). Such 2D curves represent cylindrical surfaces
of equal normal cross-section in the y−direction if
viewed in 3D which makes them suitable for model-
ing magnetic arcade structures often existing in the
solar corona. The potential A, also known as the flux
function, is the solution of Eq. (18) with prescribed
boundary conditions.

4.1 General analytical solution

Taking By = 0 in Eq. (18), we obtain the
Laplace equation

∂2A(x, z)

∂x2
+

∂2A(x, z)

∂z2
= 0 (22)

to be solved with boundary conditions that:

1. Prescribe the distribution of A along
the horizontal x−axis at the z = 0 level
(the photosphere). Thus, A0(x) ≡ A(x, 0)
is a prescribed known function of x defined
as to describe some realistic distribution of
the magnetic field, more precisely its verti-
cal z−component at z = 0. Namely, the
boundary value of the flux function A0(x)
and Bz(x, 0) are mutually related as seen in
Eq. (16).

2. Provide physically acceptable solutions
with magnetic field amplitude (and the en-
ergy) falling off with height z.

Now, Eq. (22) can first be Fourier transformed
in the horizontal variable x which gives an ordinary
second order differential equation

d2Ak(z)

dz2
− k2Ak(z) = 0. (23)
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where:

Ak(z) =
1√
2π

∫ +∞

∞

A(x, z)e−ikxdx (24)

is the Fourier transform of A(x, z).
Next, the solution of Eq. (23) satisfying the

described boundary conditions is readily obtained as:

Ak(z) = Ak(0)e−kz (25)

where Ak(0) is the Fourier transform of the pre-
scribed boundary condition A(x, 0) ≡ A0(x) or, ac-
cording to Eq. (24),

Ak(0) =
1√
2π

∫ +∞

∞

A0(x)e−ikxdx. (26)

Finally, after performing the inverse Fourier
transform to Ak(z) in Eq. (25), the solution of Eq.
(22) for the flux function A(x, z) which satisfies the
prescribed boundary conditions becomes:

A(x, z) =
1√
2π

∫ +∞

∞

Ak(z)eikxdk (27)

or

A(x, z) =
1√
2π

∫ +∞

∞

Ak(0)e(ix−z)kdk. (28)

The topology of the 2D potential magnetic
field in the corona (the region z > 0) emerging
from the boundary conditions at z = 0 (the pho-
tosphere) is now depicted by the family of curves
A(x, z) =const. while the magnetic field components
follow from Eq. (16).

4.2 Boundary conditions for models of active
regions

The boundary condition given through the
functional dependence A0(x) can be used to model
2D magnetic active regions on the surface of the pho-
tosphere at z = 0. We start from the simplest case of
a ’unipolar active region’ defined as a domain with
locally enhanced concentration of the vertical com-
ponent of magnetic field with the same orientation,
i.e. a localized ’source/sink’ of magnetic field lines
at z = 0. The ’strength’ of such an active region
will be taken proportional to the local flux density of
magnetic filed lines, and its sign determined depend-
ing on whether the magnetic field lines are emerging
from the photosphere into the corona (a ’source’)
when the sign is positive, or they are sinking from
the corona into the photosphere (a ’sink’) when the
sign is negative. According to Eq. (16), the normal
component of magnetic field at z = 0 is given by

Bz(x, 0) =
dA0(x)

dx

meaning that an active region with enhanced
Bz(x, 0) is characterized by a large x-derivative of
A0(x).

A single unipolar active region is now modeled
by a functional dependence A0(x) appropriately cho-
sen as to exhibit a localized domain with a steep gra-
dient and a relatively uniform behaviour elsewhere.
To describe a single active region located around
x = x0, we use the following functional dependence
for the boundary condition A0(x):

A0(x) = a0 tanh

(

x − x0

L

)

(29)

which is related to the vertical magnetic field com-
ponent

Bz(x, 0) =
a0

L
cosh−2

(

x − x0

L

)

. (30)

The magnitude and sign of the coefficient a0 thus
determine the strength and type (source/sink) of a
unipolar active region respectively while L defines its
linear extent around x = x0.

Having defined the boundary condition Eq.
(29) for a unipolar active region, we obtain its Fourier
transform

Ak(0) = −i
(π

2

)−1/2 a0L

sinh
(

π
2 kL

) eikx0 (31)

from Eq. (26) and then the final solution:

A(x, z) = a0L

∫ +∞

0

sin[k(x − x0)]

sinh
(

π
2 kL

) e−kzdk (32)

from Eq. (27).
Once a model for an elementary single active

region is resolved by choosing the boundary condi-
tion Eq. (29) for the flux-function, one can model a
complex structure composed of N different single ac-
tive regions by solving the linear equation (22) with a
boundary condition given by a linear combination of
boundary conditions (29) for each of N single active
regions:

A0(x) =
N
∑

n=1

a
(n)
0 tanh

[

x − x
(n)
0

L(n)

]

. (33)

Thus, for example, a symmetric dipole ac-

tive region occurs for N = 2 and a
(1)
0 = −a

(2)
0

while numerous other combinations yield interest-
ing magnetic field topologies in the corona z ≥ 0.
Some of them are suitable for modeling magnetic
fields supporting prominences, like those with local
depressions-minima, some take forms of coronal hole
structures with open magnetic field lines, etc.

The resulting flux-function A(x, z) which fol-
lows from Eq. (28) with the boundary condition (33)
is then a superposition of solutions (32):

A(x, z) =

N
∑

n=1

a
(n)
0 L(n)

∫ +∞

0

sin[k(x − x
(n)
0 )]

sinh
(

π
2 kL(n)

) e−kzdk.

(34)
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So far, we were interested in coronal magnetic
fields from localized active regions on the photo-
sphere whose topology is given by A(x, z) =const.
However, we can also assume the existence of some
additional solar global potential magnetic fields su-
perimposed on those from localized sources/sinks,
and which may be taken locally uniform, i.e. planar.
In this case, the flux-function A(g)(x, z) for such a

global magnetic field ~B(g) is clearly

A(g)(x, z) = B(g)
z x − B(g)

x z (35)

as seen from expressions in Eq. (16). The total mag-
netic field topology then follows from Eqs. (34)-(35)
as:

A(tot)(x, z) ≡ A(g)(x, z) + A(x, z) = const. (36)

Some typical examples of magnetic field con-
figurations A =const with A given by Eq. (34) are
shown in Fig. 1 for four different numbers N of lo-
calized sources at z = 0, and in absence of a global

magnetic field (i.e with ~B(g) = 0).

Fig. 1. Examples of magnetic field topologies gen-
erated by N=1, 2, 3 and 4 localized active regions
-sources/sinks- at z = 0.

The corresponding coefficients a
(n)
0 and L(n) in Fig.

1 have the following values:
N = 1, one active region:

a
(1)
0 = 1, L(1) = 1.

N = 2, two active regions:

a
(1)
0 = −1, a

(2)
0 = 1, L(1) = L(2) = 1.

N = 3, three active regions:

a
(1)
0 = −1, a

(2)
0 = −3, a

(3)
0 = 1, L(1) = L(2) =

L(3) = 0.3.

N = 4, three active regions:

a
(1)
0 = −2, a

(2)
0 = −1, a

(3)
0 = −2, a

(4)
0 = 1,

L(1) = L(2) = L(3) = L(4) = 0.3.

If a global magnetic field ~B(g) has been
present when localized active regions composed of
sources/sinks are formed at z = 0, the resulting field
topologies can be quite different from those when
~B(g) = 0, as seen in Figs. 2-3.

Fig. 2 shows an example with N = 3 lo-

calized sources/sinks, with a
(1)
0 = −2, a

(2)
0 = 1,

a
(3)
0 = 1, L(1) = L(2)= L(3) = 0.3, without (left)

and with (right) a global horizontal magnetic field
~B(g) = (0.08, 0, 0). The corresponding magnetic
field topologies follow from Eq. (36) as curves
A(tot)(x, z) =const.

Fig. 2. Example of effects caused by a horizon-
tal global magnetic field on magnetic field topology

of three localized sources/sinks: ~B(g) = 0 (left), and

B
(g)
x = 0.08 (right).

We see that the presence of a horizontal global mag-
netic field, typically found at lower latitudes near
the Solar equator, can modify the field topology of
three localized active regions in such a way that local
minima appear, which is a typical field configuration
where prominences can form for example.

Fig. 3. Example of effects caused by a vertical
global magnetic field on magnetic field topology of

four localized sources/sinks: ~B(g) = 0 (left), and

B
(g)
z = 0.08 (right).

In a similar way, Fig. 3 shows an example

of N = 4 localized sources/sinks, with a
(1)
0 = 2,

a
(2)
0 = −1, a

(3)
0 = 1, a

(4)
0 = −2, L(1)= L(2)= L(3)=

L(4) = 1, without (left) and with (right) a global

vertical magnetic field ~B(g) = (0, 0, 0.08). The as-
sumed vertical global magnetic field, typically found
at higher latitudes of Solar polar regions, clearly al-
ters the field topology of four localized active regions
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in such a way that a broader domain of open field
lines appears which is typical for coronal holes and
streamers, for example.

These were just a few illustrations out of
countless other possibilities for modeling 2D and
y−invariant magnetic field structures depending on

the choice of free parameters N , a
(n)
0 , L(n), x

(n)
0 ,

B
(g)
x and B

(g)
z in Eqs. (34)-(35).

4.3 Remarks

The described simplified analytical treatments
although performed with approximations, provide a
practical insight into how various magnetic field fea-
tures can result from combinations of localized active
regions submerged into a locally uniform global mag-
netic field. In this way, one can obtain field topolo-
gies that resemble those observed in the vicinity of
prominences, coronal streamers, neutral-field lines,
etc. If viewed in 3D, such y−invariant 2D solutions
become magnetic arcades oriented along the y−axis.
Even if a 2.5D case is considered with By(A) 6= 0
added, the shape of such arcades remains unchanged
as the resulting magnetic field lines of each arcade are
only sheared by a constant amount if By is present.

The considered Cartesian geometry can eas-
ily be replaced by other orthogonal coordinate sys-
tems provided they allow for invariance in one of
its coordinates. For example, in the cylindrical ge-
ometry with coordinates ρ, φ and z, we can model
two types of magnetic arcades: the φ−invariant
(axially symmetric), and z−invariant (Čadež et al.
1994, Čadež et al. 2005). The r−invariance is
not possible in cylindrical coordinates due to the in-
trinsic r−dependence of some terms in the opera-
tor ∇ in initial equations for magnetic field. Sim-
ilarly, the spherical geometry allows only for the
φ− (azimuthal) invariance as ∇ contains terms de-
pending on r and θ in spherical coordinates. More
detailed analyses of non Cartesian geometries in-
cluding those in generalized orthogonal coordinates
x1(x, y, z), x2(x, y, z) and x3(x, y, z) are given in
Čadež (1996).

5. GENERAL FORCE-FREE
MAGNETIC FIELD IN 3D
SPHERICAL GEOMETRY

So far, we were discussing analytical mod-
els of complex 2D active regions composed of local-
ized elementary magnetic sources/sinks on the pho-
tospheric boundary z = 0. The obtained potential
magnetic field topologies are invariant in coordinate
y and form cylindrical surfaces, arcades, along the
y−axes. Now we shall treat briefly a generalized case
of a force-free magnetic field given by Eq. (19), if
the assumption of its invariance in one coordinate
is given up. This implies that the coefficient α is
not a function of only one variable A anymore. In-
stead, it depends on all three spatial variables, i.e.
α = α(r, θ, φ) if the spherical geometry is applied.

As to the boundary condition, one takes the observa-
tional data obtained by a vector magnetograph which
provides with spatial distributions of all three mag-
netic field components over a selected area on the
surface of the photosphere at r = R�. However,
in spite of knowing all three magnetic field compo-
nents at r = R� we can say nothing for sure about
what this magnetic field should look like in the space
above the photosphere in reality, i.e. which of the
equations should be used to compute the full spa-

tial distribution of ~B. Thus, Eq. (1) is basic if a
magneto-hydrostatic equilibrium and non force-free
magnetic field are assumed, and if the plasma pres-
sure and temperature/density distributions are ini-
tially known; Eq. (19) is used if a low β approxi-
mation, i.e. a force-free magnetic field, is assumed;

Equation ∇× ~B = 0 if the force-free field is further
taken to be potential. Consequently, some decision
has to be made on the choice of the most suitable
and physically justified equation for computations of
~B in the corona where 1 � β. For this reason, the
assumption of a force-free magnetic field seems often
reasonable for the corona (Gary 2001) and we can
integrate Eq. (19) in spherical coordinates along the
radial r−direction starting from the boundary values
at r = R�. The equation Eq. (19) for MHS is now

∇× ~B = α ~B with α = α(r, θ, φ) (37)

and can be cast in the following set of three scalar
equations:

α =
1

r sin θBr

(

cos θBφ +

+ sin θ
∂Bφ

∂θ
− ∂Bθ

∂φ

)

,

∂Bφ

∂r
=

1

r sin θ

(

∂Br

∂φ
+ (38)

− sin θBφ − αr sin θBθ

)

,

∂Bθ

∂r
=

1

r

(

∂Br

∂θ
+ αrBφ − Bθ

)

.

In addition to Eq. (38), there is also the Gauss

law ∇ · ~B = 0 which reduces to

∂Br

∂r
= − 1

r sin θ

(

sin θBr + cos θBθ

+ sin θ
∂Bθ

∂θ
+

∂Bφ

∂φ

)

.
(39)

Eqs. (38) and (39) give the scalar function α
and the r− derivatives of all three magnetic field
components expressed in terms of magnetic field
components and their horizontal derivatives at each
r. In the presented form, these equations can eas-
ily be integrated numerically in the radial direction
starting from r = R� by applying the procedure as
follows.
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We start from the photospheric bound-
ary condition with known functional dependences
Br,θ,φ(R�, θ, φ). This allows for an immedi-
ate computation first of their horizontal θ− and
φ−derivatives, and then the radial r−derivatives and
the scalar function α by means of Eqs. (38) and
(39). Eventually, all three magnetic field compo-
nents, their three spatial derivatives and the coef-
ficient α are known at the initial level r = R�.
It should be pointed out that this procedure ex-
cludes any arbitrariness regarding the scalar coeffi-
cient function α as it is computed from the first of
equations (38) and it depends of the observed mag-
netic field. A 3D plot of α = α(R�, θ, φ) reveals
domains with electric currents where α 6= 0 and pos-
sibly also some current-free domains where α = 0
and the magnetic field is potential.

Going to the next level r = R�+δr can now be
simply done through the Taylor expansion formula:

Br,θ,φ(R� + δr, θ, φ)

= Br,θ,φ(R�, θ, φ) + δr ∂
∂rBr,θ,φ

∣

∣

r=R�

(40)

which yields horizontal distribution of magnetic field
components at r = R� + δr.

The described procedure is then repeated for
each additional step δr in the radial direction giving
finally the magnetic field components and the coeffi-
cient function α in the whole domain of the 3D-space.
This method however has its technical and physical
drawbacks if observed coronal structures are to be
recovered: the convergence of the numerical scheme
causes problems, and the lack of knowledge on data
and effects arising from the magnetic field existing
outside the limits of the domain where the boundary
values of the observed magnetic field are determined
from vector magnetograph data. One can also argue
whether the low β condition is really valid at lower
corona, chromosphere and photosphere (Gary 2001),
i.e. whether Eq. (37) can be fully used to begin with.

Clegg et al. (1999) studied the above problem
numerically assuming α =const. but had to intro-
duce a global magnetic helicity to obtain magnetic
fields over the entire corona and to simulate a partic-
ular coronal hole event. Valori et al. (2005) applied
a special stress-and-relax computational method for
extrapolation of a nonlinear force-free coronal mag-
netic field (with α = α(x, y, z)) from photospheric
vector magnetograms.

6. CONCLUSIONS

The described procedures of modeling coronal
magnetic field topologies are not meant to be fully
applicable in recovering particular magnetic struc-
tures observed in the corona. They are only supposed
to be useful primarily in understanding how complex
magnetic structures evolve from various combina-
tions of elementary active regions with sources/sinks
of magnetic field at the photospheric level. Sim-
ilarly to Hoeksema and Scherrer (1986) who com-
puted coronal potential magnetic fields parallel with

photospheric magnetic field observations and for a
period of ten years.

In any case, procedures of a proper extrapola-
tion of photospheric magnetic fields into the corona
and full reconstruction of total coronal magnetic field
topologies related to observed features are still far
from being operating well in a general way.
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Pregledni rad po pozivu

Daje se pregled raznih metoda odre�i-
vaǌa magnetnih poǉa u sunqevoj koroni pri
zadanim graniqnim uslovima na fotosferi.
Posebno se razmatra sluqaj magnetnih struk-
tura koje su invarijantne u odnosu na jednu
od dve horizontalne koordinate u Dekartovom
koordinatnom sistemu. U tom sluqaju mogu�a

su analitiqka rexeǌa kojima se mogu mode-
lirati brojne slo�ene strukture polaze�i
od superpozicije graniqnih uslova za pojedi-
naqna lokalizovana elementarna aktivna po-
druqja sa magnetnim poǉem qije linije sila
ili izviru ili poniru iz korone u fotosfe-
ru.

10


