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SUMMARY: The Stellingwerf one-zone stellar model is extended by assuming,
a slow and uniform rotation that leads to a very small oblateness of the star. The
matter in the core-surrounding shell is suposed to consists of a mixture of ideal
gas and radiation. This one-zone stellar pulsation model is proposed as a tool to
investigate the factors affecting luminosity variations of pulsating stars. Linear and
non-linear analyses of the resulting equations are described. The results are in very
good agreement with the observed RR Lyrae light curves.
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1. INTRODUCTION

The one-zone model was first introduced by
Baker (1966) to simplify the problem of radial stellar
pulsation. The assumption of small amplitude mo-
tion of a thin shell eliminates the spatial derivatives
and the mathematical form becomes a simple cubic
equation. This analytic approach has shed much
light upon local destabilizing mechanisms and has
been used to probe more complicated phenomena
such as non-radial pulsation (Ishizuka 1967, Zahn
1968) and convection in variable stars (Unno 1967,
Okamoto and Unno 1967, Gough 1967). Usher and
Whitney (1968) have considered this model in the
limit of a very thick shell (core radius Rc = 0).

The non-linear one-zone model is represented
mathematically as a nonlinear third-order set of ordi-
nary differential equations with time as the indepen-
dent variable. Rudd and Rosenberg (1970) presented
a model in which the non-adiabaticity is assumed,
obtaining a remarkable agreement with observations.
The nonlinear one-zone model was concisely formu-
lated and investigated in the linear and nonlinear

cases by Stellingwerf (1972). Taking into account
the luminosity variation at the base of the shell, he
obtained a very realistic light variation.

In the present paper, Stellingwerf’s nonlinear
one-zone model is extended by considering a slow and
uniform rotation that leads to a very small oblate-
ness of the star and that the matter in the core-
surrounding shell consists of a mixture of ideal gas
and radiation. Von Zeipel’s theorem indicates the
incompatibility of uniform rotation and generation
of energy by nuclear reactions. However, the result-
ing meridional currents are very slow (Sweet 1950) so
that, in this respect, uniform rotation remains an ad-
equate work hypothesis. This model is not intended
to be a substitute for finely zoned nonlinear calcula-
tions. The results are qualitative and we are content
to seek out and explain only the simplest features in
terms of basic physical processes. In Section 2 we
resort to the well-known equations of stellar struc-
ture (Kippenhahn and Weigert 1991, Lungu 1982)
and the equations for our model are written down.
Section 3 deals with the physical input of the model.
The linear results are presented in Section 4. The
condition of phase lag of π/2 (maximum luminosity
after minimum radius) is obtained in terms of phys-
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ical parameters. In Section 5 nonlinear results are
presented. The conclusions of this paper are sum-
marized in Section 6.

2. BASIC EQUATIONS

The equations of stellar structure are (Kip-
penhahn and Weigert 1991, Lungu 1982):

1. the motion equation:

∂2r

∂t2
= −Gm

r2
− 3

5

Gma2λ

r4
(1 − 3 cos2 θ) +

ω2r sin2 θ − 4πr2 ∂P

∂m
, (1)

2. the continuity equation:

dm = 4πr2(1 − λ)ρdr, (2)

3. the energy equation:

∂l

∂m
= −cV

∂T

∂t
+

δ

α

P

ρ2

∂ρ

∂t
, (3)

4. and the radiative energy transport equation
in the diffusion approximation:

l =
[

4πr2(1 − λ)
]2 4σ

3κ

∂T 4

∂m
, (4)

where ω is the (small) angular velocity, λ denotes the
oblateness, a stands for the semimajor axis of the el-
lipsoid, and θ is the polar angle. The other notations
are usual.

Like in Stelligwerf (1972), we introduce the
following relations referring to the core-surroundig
shell:

∂P

∂m
= − P

ms
,

∂l

∂m
=

L − Li

ms
,

∂T 4

∂m
= − T 4

ms
, (5)

where P, L, T stand for the pressure, radiative en-
ergy flux, and temperature in the shell, respectively,
Li is the luminosity at the base of the shell and ms
denotes the shell mass. Let M be the stellar mass,
R be the stellar radius and Rc the rigid core radius.
The equations (1), (3) and (4) become respectively:

d2R

dt2
= −GM

R2
− 3

5

GMa2λ

R4
(1 − 3 cos2 θ) +

ω2R sin2 θ + 4πR2 P

ms
, (6)

L − Li

ms
= −cV

∂T

∂t
+

δ

α

P

ρ2

∂ρ

∂t
, (7)

L = −64π2(1 − λ)2σR4

3κ

T 4

ms
. (8)

From definition, λ = (a − b)/(a + b), with b
denotes the semiminor axis of the ellipsoid, so that
we can write

a =
R

√

1 + 4λ cos2 θ
(1+λ)2

. (9)

Taking into account the expression (9), Eq.
(6) becomes

d2R

dt2
= −GM

R2
χ + ω2R sin2 θ + 4πR2 P

ms
, (10)

where

χ = 1 +
3

5

λ(1 − 3 cos2 θ)

1 + 4λ cos2 θ
(1+λ)2

. (11)

For a static star (ω = 0), we have λ = 0 and, from
(11), χ = 1.

The hydrostatic equilibrium state implies

4πR2
0

P0

ms
=

GM

R2
0

χ − ω2R0 sin2 θ, (12)

where the subscript ”0” corresponds to the equilib-
rium model.

Following Stellingwerf (1972), we denote

X =
R

R0
. (13)

The geometry is introduced via the function m =
m(X) such that (Rudd and Rosenberg 1970)

ρ

ρ0
= X−m, (14)

where

m(X) =
ln

(

X3−η3

1−η3

)

ln X
, (15)

with η = Rc/R0. The equilibrium value of m is
m0 = 3/(1− η3).

The non-adiabatic effects are contained in the
function h defined by

P

P0
=

(

ρ

ρ0

)Γ1

h (16)

where Γ1 = (∂ ln P/∂ ln ρ)ad. With these definitions,
Eq. (10) becomes

d2X

dt2
= ξ(hX−q − X−2) − ζ(hX−q − X) (17)

where ξ = GMχ/R3
0, ζ = ω2 sin2 θ, and q = mΓ1−2.

Regarding the properties of the stellar matter,
we consider the following formulae for the equation
of state and the opacity law, respectively:

ρ = ρkP αT−δ, (18)
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κ = κkρnT−s, (19)

where ρk and κk are constants.
Using (14) and (16), we write

P

P0
= X−mΓ1h. (20)

From (14), (18) and (20) we obtain

T

T0
= X−m γ−1

δ h
α
δ , (21)

where γ = cP /cV = αΓ1. For the opacity we write,
using (14), (19) and (21):

κ

κ0
= X−m[n−s γ−1

δ ]h−s α
δ . (22)

From (8), (21) and (22), we obtain for lumi-
nosity:

L

L0
= X4+m[n−(4+s) γ−1

δ ]h(4+s) α
δ , (23)

and the variation of the luminosity at the base of the
shell is supposed to be

Li

L0
= X−u, (24)

where u is a parameter that ranges from 0 to 20
(Stellingwerf and Donohoe 1987).

Using these relations, Eq. (7) becomes

dh

dt
= −ε

δ

α
Xm γ−1

δ h1−α
δ ×

×
(

X4+m[n−(4+s) γ−1

δ ]h(4+s) α
δ − X−u

)

−

−3
γ − 1

α
X2h

(

X3 − η3
)−1 ×

×
(

Xm[1−Γ1+ γ−1

δ ]h1−α
δ − 1

) dX

dt
, (25)

where ε = L0/mscV T0 = L0/Es (Es is the inter-
nal energy of the shell). Equations (17) and (25)
constitute our final set of relations for the unknown
quantities X and h.

3. PHYSICAL INPUT

For our model, we take M = 0.5M�, R0 =
3.41 × 1011cm, s = 3, ε = 10−4. The shell thick-
ness is chosen to comprise the outer 10 - 15% of the
stellar radius. Also, n is determined by the peri-
odicity condition. Angular velocity is tend to be
ω = (2π/2.6) × 10−6 (period of the rotation ≈ 30
days) and oblateness is λ = 5 × 10−7. The pres-
sure is P = Pgas + Prad. Following Kippenhahn and
Weigert (1991), let β = Pgas/P . It follows α = 1/β,
δ = (4−3β)/β, ∇ad = [1+(1−β)(4+β)/β2]/[5/2+

4(1 − β)(4 + β)/β2] and Γ1 = 1/(α − δ∇ad). For
β = 1 ( pure gas) we have Γ1 = 5/3, and if β = 0
(pure radiation) we have Γ1 = 4/3.

4. LINEAR RESULTS

We assume small amplitude motion and put
x = X − 1, h′ = h − 1.The linearized form of Eqs.
(17) and (25) read:

d2x

dt2
= [ξ(2 − q) + ζ(1 + q)]x + (ξ − ζ)h′, (26)

dh′

dt
= − δ

α
ε[(b + u)x + (4 + s)h′], (27)

where b = 4 + m0[n− (4 + s)(γ − 1)/δ]. As usual, we
assume a time variation eiσt for all quantities. From
Eqs. (26) and (27) we obtain:

h′ =
σ2 − [ξ(2 − q) + ζ(1 + q)]

(ξ − ζ)
x, (28)

h′ = −
δ
αε(b + u)

iσ + ε(4 + s)
x, (29)

These equations may be combined to yield

(iσ)3 + A(iσ)2 + B(iσ) + C = 0 (30)

where A = ε(4 + s), B = [ξ(2 − q) + ζ(1 + q)] and
C = ε(4+s)[ξ(2−q)+ζ(1+q)]+(δ/α)ε(b+u)(ζ−ξ).

Variations in the exterior luminosity will be
controled by the energy equation. We may define
l = L/L0 − 1, and combine Eqs. (23) and (29) to
obtain

l =
iσb − Au

iσ + A
x, (31)

or

l =
x

|iσ|2 + 2Re(iσ)A + A2
· (32)

[b|iσ|2 + Re(iσ)A(b − u) − A2u] + i[Im(iσ)A(b + u)].

Re(iσ) and Im(iσ) are functions of n, s, u, ... (see Eq.
30). To have strictly periodic pulsations we have to
find such values for the parameters that Re(iσ) = 0.
In that case, Eq. (32) becomes

l =
[b|iσ|2 − A2u] + i[Im(iσ)A(b + u)]

|iσ|2 + A2
x. (33)

It is easy to show that the condition for the phase
lag φ = 90◦ is
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bIm(iσ)2 = A2u, (34)

Im(iσ) > 0.

From the first of the relation (34) we see that u = 0
(no interior luminosity variation) implies b = 0, i.e.
we have no vibrational instability. Thus, we may
have φ = 90◦ only if we allow for interior luminosity
variation.

We return to Eq. (30). Let y = iσ and
z = y + A/3. Eq. (30) becomes:

z3 − v

3
z +

w

27
= 0, (35)

where v = A2 − 3B, w = 2A3 − 9AB + 27C. Let
p = [(−w + (−4v3 + w2)1/2)/2]1/3. The solutions of
Eq. (30), yi = zi − A/3 are:

y1 =
1

3

(

v

p
+ p − A

)

, (36)

y2,3 = −1

6

[

(1 ± i
√

3)
v

p
+ (1 ∓ i

√
3)p + 2A

]

. (37)

It is easy shown that Im(y2,3) 6= 0 if and only if
−4v3 + w2 ≥ 0. Also, it is seen that y1 ∈ R in any
case. For −4v3 + w2 ≥ 0 we have:

Re(y2,3) = −1

6

(

v

p
+ p + 2A

)

, (38)

Im(y2,3) = − i
√

3

6

(

±v

p
∓ p

)

. (39)

The condition for strictly periodic solutions
(Re(y2,3) = 0) is

v

p
+ p + 2A = 0, (40)

and they have the period:

Π =
2π

√
3

6

∣

∣

∣

v
p − p

∣

∣

∣

. (41)

Because y2,3 are complex conjugate numbers, we
may assume, without restricting the generality, that
Im(y2) > 0. The condition (34) for φ = 90◦ becomes:

b

12

(

v

p
− p

)2

= A2u, (42)

and, using (40),

b

3
(p + A)2 = A2u. (43)

From (43) we have u > 0 ⇔ b > 0 (vibrational insta-
bility).

5. NONLINEAR RESULTS

To facilitate nonlinear calculations, we use
the time normalization t′ = t/104 and integrate
Eqs. (17) and (25) using Mathcad software. The
integrations were started at X = 1, h = 1 and
dX/dt′ = 10−5 (leading to a maximal radial velocity
of few tens m/s for this model).

We begin by examining the effect of interior
luminosity variation on the light curve taking u = 3,
5 and 10. In addition, we take β = 1, η = 0.87,
ε = 10−4 and ω = (2π/2.6) × 10−6. The resulting
light curves are shown in Fig. 1.

Fig. 1. The effect of interior luminosity variations.
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Fig. 2. The influence of radiation pressure.

Fig. 3. The influence of the thickness of the shell.

Fig. 4. The effect of the uniform rotation.

Fig. 5. The influence of ε.
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Fig. 6. The phase laf of about 90◦.

Fig. 7. The Blazhko effect.

The variations in magnitude are ∆m ≈ 0.557
(typical of RR Lyrae of c type) for u = 3, ∆m ≈
0.893 (typical of RR Lyrae of b type) for u = 5 and
∆m ≈ 1.716 (typical of RR Lyrae of a type) for
u = 10. The period is found to be Π = 0.6 days
(typical of RR Lyrae type stars), same for all three
values of u.

To investigate the effect of radiation, we take
β = 0.99995, β = 0.9999 and β = 0.99985. In ad-
dition, we take u = 10, η = 0.87, ε = 10−4 and
ω = (2π/2.6) × 10−6. The resulting light curves are
shown in Fig. 2.

While radiation pressure increases, the asym-
metry becomes lower, and the shape of light curve
resembles the observed light curves (we note (Ledoux
and Walraven 1958) that the asymmetry is 0.4 - 0.5
for RR Lyrae of c type, 0.2 - 0.3 for RR Lyrae
of b type and 0.1 - 0.2 for RR Lyrae of a type).
Also, while radiation pressure is increasing, the am-
plitude is increasing: ∆m ≈ 1.774 for β = 0.99995,
∆m ≈ 1.898 for β = 0.9999, and ∆m ≈ 2.05 for

β = 0.99985. The period is found to be Π = 0.625
days, the same for all three values of β.

To investigate the effect of thickness of the
shell, we take η = 0.7, η = 0.8 and η = 0.9. In
addition, we take u = 4, β = 1, ε = 10−4 and
ω = (2π/2.6) × 10−6. The resulting light curves are
shown in Fig. 3.

While the shell thickness increases, the period
of pulsations increases too. The period is found to
be Π = 0.532 days for η = 0.9, Π = 0.834 days for
η = 0.8, Π = 1.134 days for η = 0.7. Thus, for RR
Lyrae type pulsating stars, we expect to have a shell
thickness of about 10-15 of the stellar radius. This
is confirmed by detailed calculations.

Now, let us investigate the effect of rotation.
We take ω = 0.1×(2π/2.6)×10−6, ω = 5×(2π/2.6)×
10−6 and ω = 10 × (2π/2.6) × 10−6. In addition, we
take u = 4, β = 1, ε = 10−4 and η = 0.87. The
resulting light curves are shown in Fig. 4.

While the rotation increases, the period of pul-
sations increases too. The period is found to be Π =
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0.613 days for ω = 0.1× (2π/2.6)× 10−6, Π = 0.671
days for ω = 5× (2π/2.6)×10−6, Π = 1.053 days for
ω = 10× (2π/2.6)× 10−6. Thus, for RR Lyrae type
pulsating stars, we expect to have a period of rota-
tion of about a month. This is in good agreement
with observations.

To investigate the effect of effective tempera-
ture, we take ε = 0.1 × 10−4, ε = 0.5 × 10−4 and
ε = 5 × 10−4. In addition, we take u = 4, β = 1,
η = 0.87 and ω = (2π/2.6) × 10−6. The resulting
light curves are shown in Fig. 5.

While the ratio of luminosity to internal en-
ergy of the shell decreases, the amplitude of pulsa-
tions increases. This is in good agreement with the
balance of energy: if the radiated energy decreases,
the kinetic energy of the shell mass increases.

So for the pulsations are strictly periodic (the
periodicity is maintained by κ - mechanism, keep-
ing s = 3 and finding appropriate values for n), but
phase lag φ = 0. To obtain φ = 90◦, we allow for
a slow increase of the amplitude of pulsations. In
Fig. 6, the light and velocity light curves are rep-
resented. We remark the very good agreement with
the observed ones.

Consequently, for this model we cannot ob-
tain exact the periodicity and the phase lag of about
90◦. But, we can explain the Blazhko effect (the ap-
parition of another peak in the light curve) by the
increaseof the radiation pressure.

In the first panel of Fig. 7, we take u = 2, β =
0.9999, η = 0.87, ε = 10−4 and ω = (2π/2.6) × 10−6

, and in the second we take u = 10−3, β = 0.99998,
η = 0.86, ε = 0.24× 10−4 and ω = (2π/2.6)× 10−6.

6. CONCLUSION

Here we summarize the main results.
(a) the increase of the interior luminosity varia-

tion leads to an increase of the amplitude of
the light curve;

(b) if the radiation pressure increases, the asym-
metry decreases and the amplitude of the light
curve increases;

(c) if the shell thickness increase, the period of
pulsations increases as well;

(d) if the rotation increases, the period of pulsa-
tions also increases. For RR Lyrae type pul-
sating stars, we expect to have a period of
rotation of about a month, in agreement with
observations;

(e) if the ratio of luminosity to internal energy
of the shell decreases, the amplitude of pulsa-
tions increases;

(f) for this model we cannot obtain exact the pe-
riodicity and the phase lag of about 90◦;

(g) we can explain the Blazhko effect by the in-
crease the radiation pressure in the shell.
Finally, we conclude that this simple model

can explain (at least qualitatively) most of the fea-
tures of the light curves of the RR Lyrae type pul-
sating stars.
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PROMENE SJAJA U PROXIRENOM JEDNO-ZONSKOM MODELU RR LYRAE

D. Pricopi
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UDK 524.332 : 524.3–82
Originalni nauqni rad

Jedno-zonski model (Stelingverf 1972)
za promenǉive zvezde RR Lyrae u ovom radu
je proxiren, uvo�eǌem spore uniformne
rotacije zvezde koja se sastoji od smexe ide-
alnog gasa i zraqeǌa crnog tela. Opisana
je linearna i nelinearna analiza izvedenih
jednaqina. Numeriqki rezultati za izabra-

ne vrednosti ulaznih parametara modela se
veoma dobro sla�u sa posmatranom krivom
sjaja RR Lyrae. Ovaj model se predla�e kao
alat za teorijsko istra�ivaǌe uticaja ra-
zliqitih faktora koji podr�avaju promene
sjaja pulsacionih zvezda.
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