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SUMMARY: Simulated dark matter haloes are fitted by self-similar, universal
density profiles, where the scaled parameters depend only on a scaled (truncation)

radius, Ξ = R/r0, which, in turn, is supposed to be independent of the mass and
the formation redshift. The further assumption of a lognormal distribution (for a
selected mass bin) of the scaled radius, or concentration, in agreement with the data
from a large statistical sample of simulated haloes (Bullock et al. 2001), allows (at
least to a first approximation) a normal or lognormal distribution for other scaled
parameters, via the same procedure which leads to the propagation of the errors.
A criterion is proposed for the choice of the best fitting density profile, with regard
to a set of high-resolution simulations, where some averaging procedure on scaled
density profiles has been performed, in connection with a number of fitting density
profiles. To this aim, a minimum value of the ratio, |xη |/σs η = |η − η∗|/σs η , is

required to yield the best fit, where η is the arithmetic mean over the whole set; η∗
is its counterpart related to the fitting density profile; σs η is the standard deviation
from the mean; and η is a selected, scaled i.e. dimensionless parameter. The
above criterion is applied to a pair of sets each made of a dozen of high-resolution
simulations, FM01 (Fukushige and Makino 2001) and KLA01 (Klypin et al. 2001),
in connection with two currently used fitting density profiles, NFW (e.g. Navarro
et al. 1997) and MOA (e.g. Moore et al. 1999), where the dependence of the scaled
radius on the mass and the formation redshift may be neglected to a first extent.
With regard to FM01 and KLA01 samples, the best fits turn out to be MOA and
NFW, respectively. In addition, the above results also hold in dealing with rms
errors derived via the propagation of the errors, with regard to the distributions
of scaled parameters. The sensitivity error of simulations is also estimated and
shown to be less than the related, standard deviation, that is a necessary condition
for detectability of accidental errors. Some features of the early evolution of dark
matter haloes, represented by fitting density profiles, are discussed in the limit of
the spherical top-hat model. Although the related matter distributions appear to
be poorly representative of simulated haloes, unless the (mean) peak height is an
increasing function of the mass, the results are shown to be consistent, provided
considerable acquisition of angular momentum takes place during the expansion
phase.
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1. INTRODUCTION

According to a wide number of both analyti-
cal and numerical studies (e.g. Cole and Lacey 1996,

Syer and White 1998, Navarro et al. 1995, 1996,
1997, hereafter quoted as NFW97, Moore et al. 1998,
1999, hereafter quoted as MOA99, Fukushige and
Makino 2001, hereafter quoted as FM01, Klypin et
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al. 2001, hereafter quoted as KLA01, Fukushige and
Makino 2003, hereafter quoted as FM03), dark mat-
ter haloes which virialize from hierarchical cluster-
ing show universal density profiles, ρ = ρ(r; ρ0, r0),
where ρ0 is a scaling density and r0 is a scaling ra-
dius. In this view, smaller haloes formed first from
initial density fluctuations and then merged with
each other, or were tidally disrupted from previously
formed mergers, to become larger haloes.

The density profile is (i) self-similar, in the
sense that it has the same expression, independent of
time (e.g. FM01), and (ii) universal, in the sense that
it has the same expression, independent of halo mass,
initial density perturbation spectrum, or value of cos-
mological parameters (e.g. NFW97, FM01, FM03).
A satisfactory fit to the results of numerical simula-
tions is the family of density profiles (e.g. Hernquist
1990, Zhao 1996):

ρ

(

r

r0

)

=
ρ0

(r/r0)γ [1 + (r/r0)α]χ
; χ =

β − γ

α
;

(1)
for a suitable choice of exponents, α, β, and γ.

This family includes both cuspy profiles first
proposed by Navarro et al. (1995, 1996), NFW97,
(α, β, γ) = (1, 3, 1), hereafter quoted as NFW density
profile, and the so called modified isothermal profile,
(α, β, γ) = (2, 2, 0), which is the most widely used
model for the halo density distribution in analyses of
observed rotation curves. It also includes the perfect
ellipsoid (e.g. De Zeeuw 1985), (α, β, γ) = (2, 4, 0),
which is the sole (known) ellipsoidal density profile
where a test particle admits three global integrals
of motion. Finally, it includes the Hernquist (1990)
density profile, (α, β, γ) = (1, 4, 1), which closely ap-
proximates the de Vaucouleurs r1/4 law for elliptical
galaxies. In dealing with the formation of dark mat-
ter haloes from hierarchical clustering in both CDM
and ΛCDM scenarios, recent high-resolution simula-
tions allow (α, β, γ) = (3/2, 3, 3/2), hereafter quoted
as MOA density profile, as a best fit (e.g. Ghigna
et al. 2000, FM01, KLA01, FM03), as first advo-
cated by Moore et al. (1998) and MOA991. But for
a different point of view, concerning the trend near
the centre of the system, see e.g. Mücket and Hoeft
(2003).

In addition, purely dark matter structures
which fulfill Jeans equation, exhibit 1 ≤ γ ≤ 3
for density profiles following an exact power-law,
ρ ∝ r−γ , and this constraint weakens only slightly for
a more general mass distribution where the density-
power slope, γ(r), is a function of the radius; if other-
wise, the system cannot be considered as in equilib-
rium and/or the effects of baryonic component have
to be investigated (Hansen 2004).

Leaving aside peculiar situations such as the
occurrence of major mergers, the average evolution
may be approximated as self-similar to a good extent.
Accordingly, a single halo may be characterized by
two parameters: the (fiducial) total mass, M , and a
dimensionless quantity, δ, related to the amplitude

of the density perturbation at the collapse (NFW97,
FM01). The scaling density, ρ0, and the scaling ra-
dius, r0, may also be expressed in terms of M and δ
(NFW97, FM01).

Though Eq. (1) implies null density at infinite
radius, profile fits are necessarily performed within
the virialized region of a halo, bounded by a trun-
cation radius. In fact, the presence of neighbouring
systems makes the tidal radius as an upper limit. On
the other hand, isolated objects cannot extend out-
side the Hubble sphere of equal mass. The region
enclosed within the truncation boundary has to be
intended as representative of the quasi static halo in-
terior, leaving aside the surrounding material which
is still infalling. Numerical simulations show that
the quasi static halo interior is defined by a mean
density, ρ̄200 ≈ 200ρcrit (e.g. Cole and Lacey 1996,
NFW97, FM01), where ρcrit is the critical density
of the universe. An alternative definition is found in
KLA01, where the quasi static halo interior has same
mean density as predicted by the top-hat model.

Given a set of simulated, dark matter haloes,
the choice of a fitting density profile, expressed by
Eq. (1), implies the following steps (e.g. Dubinski
and Carlberg 1991, FM01, KLA01, FM03).

(a) Select a choice of exponents (α, β, γ), for defin-
ing the universal density profile.

(b) Use a nonlinear least-squares method to de-
termine the best fit for the scaling density, ρ0,
and the scaling radius, r0, with regard to each
simulation.

(c) Determine the scaled, averaged density profile,
and related values of the scaling parameters,
(r0, ρ0).

(d) Particularize the fitting formula, expressed by
Eq. (1), to (r0, ρ0) = (r0, ρ0), and calculate the
parameters of interest, including the residuals
related to the scaled, averaged and fitting den-
sity profile, respectively.
At present, no general consensus exists on

the details of the above mentioned procedure. The
scaling density and the scaling radius may be con-
strained to yield M(R) = Mtrn, where M(R) is
the mass within the truncation radius, R, related
to the fitting density profile, and Mtrn is the mass
within the virialized region (e.g. FM03). An av-
erage over the simulations may be performed with
regard to the scaling density and the scaling ra-
dius, or any other two equivalent parameters (e.g.
FM01). The minimization procedure may be applied
to the sum of either the squares of logarithmic residu-
als, [log(ρsim/ρ0)− log(ρuni/ρ0)]

2 (e.g. Dubinski and
Carlberg 1991, FM03), or the absolute values of log-
arithmic residuals, | log(ρsim/ρ0)− log(ρuni/ρ0)| (e.g.
KLA01), where ρsim and ρuni denote respectively,
simulated and universal density profiles, related to
an assigned radius, r. For further details on the fit-
ting procedures see e.g. Fukushige et al. (2004),
Tasitsiomi et al. (2004).

Though the above mentioned method allows
a selection between different, universal density pro-

1More precisely, a slope α = 1.4 was derived by Moore et al. (1998), while the value α = 1.5 was established in MOA99.
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files (e.g. FM01, FM03), it does not seem to hold in
general (e.g. KLA01). In other words, a simulated
density profile may be fitted, to an acceptable extent,
by universal density profiles with several choices of
exponents, (α, β, γ) appearing in Eq. (1). Further in-
vestigation on additional criteria, in fitting universal
to simulated density profiles, could be useful in low-
ering the above mentioned degeneracy.

Data from a statistical sample of about five
thousands of simulated dark matter haloes (Bullock
et al. 2001) are consistent with a lognormal distri-
bution of the concentration; Ξtrn = R/r0, i.e. the
ratio of the truncation radius, R, to the scaling ra-
dius, r0, with regard to NFW density profiles. The
distribution is related to masses within a range (0.5-
1.0)×10nh−1M�, where n is an integer, 11 ≤ n ≤ 14.
The scatter is large, about σlog Ξtrn

= 0.18 (Bullock
et al. 2001).

The existence of a lognormal distribution is a
necessary, but not sufficient condition, for the valid-
ity of the central limit theorem. In this view, the
concentration is related to the final properties of a
simulated halo, which are connected with the ini-
tial conditions, α1, α2, ..., αn, by a transformation,
Ξtrn = α1α2...αn, as in dealing with the process of
star formation, where the stellar mass follows a log-
normal distribution (for further details, see Adams
and Fatuzzo 1996, Padoan et al. 1997).

If, for a selected mass range, the density profile
is assumed to be universal, then the scaled physical
parameters, related to e.g. mass, moment of inertia,
and potential energy, depend on the scaled radius
only (e.g. Caimmi and Marmo 2003). Accordingly,
the distribution of a scaled physical parameter, to a
first extent, is expected to be normal or lognormal.

There is a well known analogue of the above
procedure in the theory of errors. Let a physical
quantity, Ξ, be directly measured, and then follow
a normal distribution, characterized by an expected
value, Ξ∗, and a rms error, σΞ. Let some other physi-
cal quantity, Ψ, depend on the former one, Ψ = φ(Ξ),
and, thus, be indirectly measured. As a result of the
theory of errors, the physical quantity, Ψ, at least
to a first extent, also follows a normal distribution,
characterized by an expected value, Ψ∗ = φ(Ξ∗), and
a rms error, σΨ = |(∂φ/∂Ξ)Ξ∗ |σΞ.

The current investigation is aimed to pro-
vide an additional criterion in fitting universal to
simulated density profiles. The procedure in ques-
tion starts from a set of high-resolution simulations,
where (i) both mass and radius of the virialized re-
gion are known for each sample halo; (ii) scaled den-
sity profiles are averaged over the whole sample; (iii)
scaling parameters, (r0, ρ0), are deduced with respect
to different choices of exponents, (α, β, γ), appearing
in the fitting formula, given by Eq. (1).

A fitting, scaled density profile is defined by
a choice of exponents, (α, β, γ), and a scaled trun-
cation radius, Ξ, which allows the calculation of the
remaining scaled parameters. Under the assumption
of invariant scaled truncation radius, a fitting, scaled
density profile represents an infinite family of den-
sity profiles, hereafter refered to as fitting scaled halo,

each related to a particular choice of scaling param-
eters, (r0, ρ0). Accordingly, the generic member of
the above mentioned family is defined by three ex-
ponents, (α, β, γ), a scaled truncation radius, Ξ, and
two scaling parameters, (r0, ρ0).

A similar situation occurs for polytropes (e.g.
Caimmi 1980), where a scaled density profile repre-
sents an infinite family of density profiles. It depends
on one exponent, n (the polytropic index), and a
scaled radius, Ξ (where the density falls to zero). The
generic member of the family depends, in addition,
on two scaling parameters, (R, λ), which represent
the radius and the central density, respectively.

Given a sample of simulated, dark matter
haloes, let us define a mean, scaled density profile,
as the result of some averaging procedure over the
whole sample. Then a mean, scaled density profile
represents its parent set of simulations and, in the
following, it shall be refered to as mean scaled halo.

With regard to a selected, fitting, scaled den-
sity profile, (α, β, γ), the dependence of the scaling
parameters, (r0, ρ0), on a pair of independent param-
eters, (M, δ), can be deduced from the mean, scaled
halo (e.g. FM01). Then a scaled mass, M/M0, can
be explicitly expressed and compared with its coun-
terpart related to the fitting, scaled density profile.
It, in turn, allows the calculation of the scaled trun-
cation radius, Ξ, and other scaled parameters, which
define the fitting scaled halo.

On the other hand, in dealing with a generic,
simulated halo, both mass and radius of the virial-
ized region, Mtrn and Rtrn, are known as computer
outputs. Accordingly, a scaled radius, ξtrn = rtrn/r0,
and a scaled mass, Mtrn/M0, can be determined to-
gether with additional scaled parameters, and the
deviations from their counterparts, related to the fit-
ting, scaled halo, may be analysed. In particular,
the arithmetic mean, η, the standard deviation from
the mean, σs η, and the standard deviation from the
standard deviation from the mean, σs µ, may be cal-
culated for a selected scaled parameter, η.

The fitting density profile to a fixed simulated
halo is defined by three exponents, (α, β, γ), a scaled
truncation radius, ξtrn, and two scaling parameters,
(r0, ρ0). It shall be hereafter quoted as fitting halo.
Unlike the fitting, scaled halo, fitting haloes exhibit
different scaled truncation radii, related to different
simulated haloes, while the remaining parameters are
left unchanged.

At this stage, it is possible to see to what
extent different, fitting, scaled density profiles,
(α, β, γ), make scaled parameters, η, related to each
simulated halo, deviate from their counterparts, η∗,
related to the fitting, scaled halo. In other words, one
is able to recognize if the inequality, η − σs η < η∗ <
η + σs η, is fulfilled. Finally, the best fitting density
profile among the ones under consideration, is chosen
as minimizing the ratio, |xη |/σs η = |η − η∗|/σs η .

The current investigation shall be limited to
samples of recent, high-resolution, virialized struc-
tures where (a) the sample is homogeneous i.e. re-
lated to a fixed cosmological model; (b) the sample
is not extremely scarce i.e. the number of objects ex-
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ceeds ten; (c) the values of the scaling density, scaling
radius, virial mass, and virial radius, are reported or
may be deduced from the results.

The above conditions are satisfied by two sam-
ples, each made of a dozen of runs, namely FM01 and
KLA01. With regard to the latter, the twelve runs
studied therein are in fact three sets of simulations of
only four dark matter haloes with resolution varied
in each set. They cannot be treated as twelve inde-
pendent runs but, on the other hand, they can be
conceived as measures of a same physical quantity,
but using different methods.

The two sets of runs differ in many respects,
namely: 1) cosmological model; 2) criterion in mak-
ing subsets of runs; 3) criterion in ending simula-
tions; 4) mass range; 5) definition of the virial radius;
6) scaling between NFW and MOA density profiles;
7) choice of the pair of independent parameters, i.e.
(M, δ) or (ρ0, r0). For further details, see FM01 and
KLA01.

Both NFW and MOA density profiles are fit-
ted to simulated density profiles for the samples
under consideration (FM01, KLA01). Accordingly,
the above mentioned criterion shall be used in the
present paper, to see what is the best fit, among
NFW and MOA, to each set of simulations.

The main limit of the current approach lies in
the assumption of scaled density profiles, related to
an invariant, scaled (truncation) radius, Ξ, and other
scaled parameters depending only on Ξ. In general,
the scaled radius, which has the same formal defi-
nition as the concentration (e.g. NFW97), depends
on both the mass and the redshift. More precisely,
the concentration is lowered for increasing mass (con-
stant redshift) and redshift (constant mass), with
a milder/steeper dependence for CDM/ΛCDM cos-
mological models (Bullock et al. 2001). An inves-
tigation based on a large statistical sample (Bul-
lock et al. 2001) has shown that, within a ΛCDM
scenario, the intrinsic spread in concentration, re-
lated to a mass bin of distinct haloes, is compara-
ble to the systematic change in the mean value of
concentration related to the above mentioned mass
bin, across the entire mass range studied therein
(1011 < M/M� < 1014).

It will be shown that, for both FM01 and
KLA01 simulations, the intrinsic spread in concen-
tration is dominant over the systematic change in
the mean value of concentration on a mass bin, across
the entire mass range studied therein. Accordingly,
the fitting density profile may be considered, to an
acceptable extent, as related to an invariant scaled
radius. In general, it is the case for a sufficiently
narrow mass range.

The current paper is organized in the follow-
ing way. Useful formulae related to NFW and MOA
density profiles are summarized in Section 2. The
fitting, scaled haloes, related to FM01 and KLA01
set of simulations, with regard to both NFW and
MOA density profiles, are determined in Section 3.
The deviations of simulated haloes from their fitting
counterparts, in connection with a number of scaled
parameters, is also analysed therein. The following

Section 4 is dedicated to a discussion, within which
some features of the early evolution of fitting haloes
are discussed, in the limit of the spherical top-hat
model. Some concluding remarks are drawn in Sec-
tion 5. Further investigation on a few special argu-
ments is performed in the Appendix.

2. NFW AND MOA DENSITY PROFILES

With regard to the family of density profiles,
expressed by Eq. (1), let us define a scaled density,
f , and a scaled radius, ξ, as:

f(ξ) =
ρ

ρ0
=

2χ

ξγ(1 + ξα)χ
; f(1) = 1 ; (2)

ξ =
r

r0
; Ξ =

R

r0
; (3)

where the normalization, f(1) = 1, makes ρ0 and
r0 be the density and the radius (i.e. radial co-
ordinate), respectively, of a reference isopycnic sur-
face, and Ξ corresponds to the truncation isopycnic
surface, or the truncation radius, R. On the other
hand, the normalization currently used in the liter-
ature takes ρ′

0 = 2χρ0, in particular (ρ′
0)NFW = 4ρ0

and (ρ′0)MOA = 2ρ0. The choice of exponents,
(α, β, γ) = (1, 3, 1), (3/2, 3, 3/2), selects NFW and
MOA density profiles, respectively, from Eq. (1).

The explicit expression of a number of scaled
parameters, related to global or local properties of
the parent density profile, are listed in Table 1. Lo-
cal properties depend on the scaled radius, ξ, and
global properties depend on the scaled truncation
radius, Ξ, which has the same formal definition as
the concentration (e.g. NFW97).

3. MEAN AND FITTING
DARK MATTER HALOES

It can be shown that both NFW and MOA
density profiles provide an acceptable fit to high-
resolution simulations (e.g. FM01, KLA01), with
the possible exception of scales of the order of cluster
of galaxies, where MOA density profiles seem to be
more satisfactory (e.g. FM03).

The explicit expression of the scaling density,
ρ0, as a function of the independent parameters,
(M, δ), prescribed in FM01, by averaging over the
whole set of simulations, reads:

ρ0 = Cρδ

(

M

M10

)−1
M10

kpc3 ; M10 = 1010M� ; (4a)

(Cρ)NFW,FM =
7k3

1

40
; (Cρ)MOA,FM =

7

20
; (4b)

and the analogoue for the scaling radius, r0, reads:
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Table 1. Comparison between functions (local properties) and profile parameters (global properties), related
to NFW and MOA density profiles, respectively. The profile parameters depend on a single unknown variable,
i.e. the scaled radius, Ξ. The profile parameter, νJ , is related to the special case of constant rotational velocity
on the equatorial plane. Rigidly rotating configurations correspond to νJ = νI . Caption of symbols: M -
total mass within the truncation isopycnic surface; M0 - mass of a homogeneous region with same density
and boundary as the reference isopycnic surface; ρ̄ - mean density within the truncation isopycnic surface;
veq(Ξ), (v0)eq - rotational velocity with respect to the centre of mass, at a point placed on the truncation
and reference isopycnic surface, respectively; I - moment of inertia; R - radius; Esel - self potential-energy;
G - constant of gravitation; J - angular momentum.

function or definition NFW MOA
parameter

f(ξ) ρ(ξ)
ρ0

4
ξ(1+ξ)2

2
ξ3/2(1+ξ3/2)

P (ξ) 2
∫

f(ξ)ξ dξ 8
1+ξ −2[ω1(ξ) + ω2(ξ) + ω3(ξ)]

F (ξ) 2
∫ Ξ

ξ
f(ξ)ξ dξ P (Ξ) − P (ξ) P (Ξ) − P (ξ)

νM
M
M0

12
[

ln(1 + Ξ) − Ξ
1+Ξ

]

4 ln(1 + Ξ3/2)

νρ̄
ρ̄
ρ0

12
Ξ3

[

ln(1 + Ξ) − Ξ
1+Ξ

]

4
Ξ3 ln(1 + Ξ3/2)

νeq
veq(Ξ)
(v0)eq

[

1
Ξ

ln(1+Ξ)−Ξ/(1+Ξ)
ln 2−1/2

]1/2 [

1
Ξ

ln(1+Ξ3/2)
ln 2

]1/2

νI
I

2MR2

6(1+Ξ) ln(1+Ξ)+Ξ3−3Ξ2−6Ξ
9Ξ2[(1+Ξ) ln(1+Ξ)−Ξ]

Ξ2−4Ξ1/2+ω1(Ξ)+ω2(Ξ)−ω3(Ξ)−ω1(0)
νMΞ2

νsel
−EselR
2GM2

Ξ
4

Ξ(2+Ξ)−2(1+Ξ) ln(1+Ξ)
[(1+Ξ) ln(1+Ξ)−Ξ]2

9
16

Ξ
ν2

M

∫ Ξ

0
F 2(ξ) dξ

νJ
1

νMΞ

∫ Ξ

0
f(ξ)ξ3 dξ 4

νMΞ

[

Ξ(2+Ξ)
1+Ξ − 2 ln(1 + Ξ)

]

2Ξ−ω1(Ξ)+ω2(Ξ)−ω3(Ξ)+ω1(0)
νMΞ

ω1(ξ) = 4√
3
arctg 2ξ1/2−1√

3
; ω2(ξ) = 4

3 ln(1 + ξ1/2) ; ω3(ξ) = 2
3 ln(1 − ξ1/2 + ξ) ; ω1(0) = −2π

3
√

3
.

r0 = Crδ
−1/3

(

M

M10

)2/3

kpc ; (5a)

(Cr)NFW,FM = 2 10−2/3k−1
1 ; (5b)

(Cr)MOA,FM = 2 10−2/3 ; (5c)

where the normalization constant, k1, provides a con-
nection between NFW and MOA density profiles, in
fitting the results of simulations. For further details,
see FM01 and Caimmi and Marmo (2003, Appendix
B).

With regard to a selected, scaled density pro-
file (NFW or MOA), scaled parameters related to
simulated haloes may be calculated via the scal-
ing parameters, (r0, ρ0), defined by Eqs. (4) and (5)
which, in turn, correspond to fixed choices of inde-
pendent parameters, (M, δ). For sake of brevity, let
us define any parameter, related to a fitting, halo, as
fitting parameter (e.g. the mass of a fitting halo is
referred to as fitting mass).

The value of the dimensionless parameter, δ,
is considered to reflect an amplitude of the density
perturbation at turnaround and, for this reason, it
can be thought of as constant during the evolution of
a halo (e.g. Cole and Lacey 1996, NFW97, FM01).
From the standpoint of top-hat, spherical density
perturbation, it is related to both the mass and the
peak height, as shown in Appendix A.

The combination of Eqs. (4) and (5) yields:

νM =
M

M0
=

3

4π

1

CρC3
r

; (6)

where M0 is the mass of a homogeneous region, with
same density and boundary as the reference isopyc-
nic surface, (r0, ρ0). The shape factor, νM , depends
on the scaled radius, Ξ, as shown in Table 1. Then
the last quantity may be determined, with regard to
a selected, fitting density profile.

Let us define a dimensionless parameter, κ, as:

κ = δ1/2

(

R

kpc

)3/2(
M

M10

)−1

; (7)

where R = Ξr0 is the radius of the truncation isopy-
cnic surface. The combination of Eqs. (5) and (7)
yields:

κ = C3/2
r Ξ3/2 ; (8)

which, in turn, is related to the whole set of sim-
ulations, and depends on the fitting scaled radius,
Ξ.

The simulated parameters e.g. mass, mean
density, radius, of the virialized configuration, and
scaled radius, shall be labeled by the index, trn,
where trn = 200vir depending on whether FM01 or
KLA01 runs are involved. This is why different defi-
nitions of radius of the virialized configuration have
been used in FM01 and KLA01.

The scaling density, ρ0, and the scaling radius,
r0, are taken as fundamental quantities in KLA01,
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and then no counterpart to Eqs. (4) and (5) is pro-
vided therein. On the other hand, the results of nu-
merical simulations (e.g. NFW97, FM01, KLA01,
Bullock et al. 2001, FM03) provide additional sup-
port to the idea, that density profiles of dark matter
haloes in hierarchically clustering universes have the
same shape, independent of the halo mass, the ini-
tial density perturbation spectrum, and the values of
cosmological parameters. Consequently, we suppose
that Eqs. (4) and (5) hold even in averaging scaled
density profiles from KLA01 simulations, but differ-
ent values must be assigned to the coefficients, Cρ

and Cr. In doing this, the procedure will depend on
the density profile (NFW or MOA) under consider-
ation.

With regard to NFW density profiles, the
scaled radius, ξvir = rvir/r0, is provided for each run
in KLA01, and the mean density of the virialized
configuration, ρ̄vir = 3Mvir/(4πr3

vir), together with
the scaling radius, r0, may be deduced from KLA01
results. The twelve runs from KLA01 correspond to
virial masses of the same order, which allows a com-
parison with four runs executed by FM01 i.e. 4M0,
2M0, 2M1, 2M2, where the virial masses are also of
the same order.

It can be seen that the related, averaged, scal-
ing radius is:

(r̄0)NFW,KLA = 25.675 kpc ; (9a)

(r̄0)NFW,FM = 12.87 kpc ; (9b)

and the ratio equals two within the uncertainty of
the results. Then we assume that the value of the
constant, Cr , appearing in Eqs. (5), doubles its coun-
terpart related to FM01 simulations, that is:

(Cr)NFW,KLA = 4 10−2/3k−1
1 ; (10a)

(Cr)MOA,KLA = 4 10−2/3 . (10b)

The parameters, Mvir, rvir, and δ, are intrinsic
to simulations (e.g. FM01) and for this reason do not
depend on the fitting density profile. Consequently,
the combination of Eqs. (5a) and (10) yields:

(r0)MOA = k1(r0)NFW ; (11)

where k1 = 2.275 according to Caimmi and Marmo
(2003, Appendix B).

The fitting scaled radius, Ξ, is determined by
averaging the results from KLA01 runs, as:

Ξ = (ξ̄vir)NFW = 13.50833 ; (12)

in the mass range (0.68− 2.10)× 1012h−1M�, which
is consistent with the expected value of the lognor-
mal distribution deduced from a statistical sample
of about two thousands of dark matter haloes in the
mass range (0.5 − 1.0) × 1012h−1M� (Bullock et al.
2001).

Then the combination of Eqs. (6) and (10a)
leads to:

(Cρ)NFW,KLA =
3

4π

[

(νM )NFW(Cr)
3
NFW,KLA

]−1
;

(13)

where M = νMM0, according to the results listed in
Table 1. The combination of Eqs. (12) and (13) yields
(Cρ)NFW,KLA = 0.209911. Replacing the truncation
radius by the virial radius, the following relation is
deduced from Table 1:

Mvir = 12M0

[

ln(1 + ξvir) −
ξvir

1 + ξvir

]

; (14)

it allows the calculation of the scaling mass, M0, the
fitting mass, M , and then the remaining parame-
ters, for each run in connection with NFW density
profiles.

In dealing with MOA density profiles, the con-
stant, Cr, and the scaling radius, r0, are expressed by
Eqs. (10b) and (11), respectively, and the constant,
Cρ, takes the expression:

(Cρ)MOA,KLA =
2

k3
1

(Cρ)NFW,KLA =
75

32π
(νM )−1

NFW;

(15)
where the profile parameter, νM , may be calculated
using the results listed in Table 1 together with
Eq. (12), yielding (Cρ)MOA,KLA = 0.0356551. The
combination of Eqs. (6), (10b), and (15) produces:

(νM )MOA =
1

2
(νM )NFW ; (16)

which implies (M0)MOA = 2(M0)NFW provided the
fitting mass, M , is kept fixed passing from MOA to
NFW density profiles and vice versa. To this respect,
it has already been printed out that the parameters
Mvir, rvir, and δ, are also left unchanged. Then the
remaining parameters may be calculated following
the procedure used in connection with FM01 simu-
lations, as outlined in Appendix B.

3.1 Fitting scaled dark matter haloes related
to MOA and NFW density profiles

With regard to MOA density profiles, the
combination of Eqs. (4b), (5b) and (6) yields:

νM =
375

14π
; (17)

the comparison with the explicit expression for the
profile factor, νM , listed in Table 1, produces:

Ξ =

[

exp

(

375

56π

)

− 1

]2/3

. (18)

With regard to NFW density profiles, simi-
larly, we have:

νM =
375

7π
; (19)

and the comparison with the explicit expression for
the profile factor, νM , listed in Table 1, yields:

1

1 + Ξ
− ln

1

1 + Ξ
= 1 +

125

28π
. (20)
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Table 2. Values of the scaled radius, Ξ, the scaled radius at which maximum centrifugal support along
a selected, radial direction occurs, ξmax, the profile parameters, νρ, νρ̄, νM , νeq, νI , νsel, νJ , νrot, and the
dimensionless parameter, κ, related to fitting NFW and MOA density profiles, to both FM01 and KLA01
simulations. The profile parameters, νJ and νrot, are related to the special case of constant rotational
velocity on the equatorial plane. Rigidly rotating configurations correspond to νJ = νI , νrot = νI . The
profile parameter, νeq, attains values which are very close to each the other, for the FM01 simulations.

parameter FM01 KLA01
NFW MOA NFW MOA

Ξ 9.20678 3.80693 13.50833 5.43586
ξmax 2.16258 1.24968 2.16258 1.24968
νρ 0.00417037 0.0319486 0.00140677 0.0115409
νρ̄ 0.0218504 0.154536 0.00848858 0.0651335
νM 17.05231 8.52616 20.92379 10.46189
νeq 0.893929 0.898766 0.647442 0.833159
νI 0.0554130 0.0892287 0.0498080 0.0799089
νsel 1.12890 0.561202 1.10549 0.632324
νJ 0.139180 0.146741 0.128641 0.135717
νrot 0.333333 0.333333 0.333333 0.333333
κ 2.30269 2.10091 11.57498 10.13895

Table 3. Values of some parameters related to simulated, dark matter haloes, according to FM01, for a
standard CDM model with H0 = 50 km s−1 Mpc−1, Ω = 1, and σ8 = 0.7. The particle masses are equal,
and the total number of particles for each simulation is (2.0 − 2.1) × 106. Captions: m - mass of a single
particle; z - redshift (at the start and end of simulation); N200 - total number of particles within the sphere
where ρ̄ = 200ρcrit (ρcrit is the critical density); M200 - mass enclosed within the above mentioned sphere;
r200 - radius of the above mentioned sphere; δ - dimensionless parameter related to the amplitude of the
density perturbation at the collapse. The mass unit is M10 = 1010M�.

run m/M10 zstart zend N200 M200/M10 r200/kpc δ−1

16M0 3.0 10−2 18.8 0.0 873170 2.6 104 1.7 103 1.0
16M1 6.0 10−2 18.5 0.0 1279383 7.8 104 2.4 103 0.4
16M2 6.1 10−2 20.4 0.0 1322351 8.0 104 2.4 103 0.6
8M0 3.7 10−3 22.3 0.58 745735 2.8 103 4.8 102 2.5
8M1 7.6 10−3 22.2 0.63 1186162 9.0 103 7.2 102 1.0
8M2 7.6 10−3 23.9 0.59 1015454 7.7 103 7.0 102 3.0
4M0 4.7 10−4 25.9 1.6 559563 2.7 102 1.3 102 10.0
4M1 9.5 10−4 25.9 1.6 846301 8.0 102 2.0 102 3.0
4M2 9.5 10−4 27.4 1.2 697504 6.6 102 2.2 102 6.0
2M0 5.9 10−5 29.7 2.1 643151 6.6 101 6.2 101 35.0
2M1 1.2 10−4 29.7 2.2 957365 1.1 102 8.5 101 12.0
2M2 1.2 10−4 30.9 1.8 923545 1.0 102 9.6 101 30.0

The knowledge of the scaled radius, Ξ, via
Eqs. (18) and (20), allows the calculation of the pro-
file parameters, νρ̄, νeq, νI , νsel, νJ , according to the
explicit expressions listed in Table 1. The related
physical parameters, ρ̄, veq, I , Esel, J , may, in turn,
be calculated, according to the definitions listed in
Table 1 and via Eqs. (4), (5), provided the indepen-
dent parameters, (M, δ), are assigned.

The scaled radius, ξmax, where either NFW
or MOA velocity profile, veq(ξ), related to centrifu-
gal support along a selected radial direction, attains
its maximum value, may be calculated by applying
the standard methods of analysis and then solving a
transcendental equation.

Numerical values of the scaled radius, Ξ, the

scaled radius where maximum centrifugal support
along a selected, radial direction occurs, ξmax, and
the profile parameters, νρ, νρ̄, νM , νeq, νI , νpot, νJ ,
νrot, are listed in Table 2 for fitting NFW and MOA
density profiles, to both FM01 and KLA01 simula-
tions.

3.2 Deviation of simulated dark matter haloes
from their fitting counterparts

The above results allow the comparison be-
tween simulated and fitting, dark matter haloes. Val-
ues of some relevant parameters related to simula-
tions with high resolution, performed by FM01, are
listed in Table 3.
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Table 4. Values of some parameters related to simulated, dark matter haloes, according to KLA01, for
a ΛCDM model with H0 = 70 km s−1 Mpc−1, Ω0 = 1 − Λ0 = 0.3, and σ8 = 0.9. All simulations were
started at zstart = 60. Captions: m - mass of a single particle; zend - redshift at the end of simulation; Nvir

- total number of particles within the sphere where ρ̄ = ρcritΩ0δTH (ρcrit is the critical density and δTH is
the density excess predicted by the top-hat model); Mvir - total mass within the above mentioned sphere;
rvir - radius of the above mentioned sphere; (Nvirm/M10)

∓ - upper and lower value of Nvirm/M10 deduced
from the data. The mass unit is M10 = 1010 M�. A positive answer to the question mark means that the
inequality, M−

vir ≤ Mvir ≤ M+
vir is satisfied. The related, explicit expression, is shown by Eqs. (22).

run m
M10

zend Nvir

(

Nvirm
M10

)+ (

Nvirm
M10

)−
Mvir

M10

rvir

kpc ?

A1 2.3 10−3 0 1.2 105 294 259 286 367 Y
A2 1.9 10−2 0 1.5 104 302 268 300 373 Y
A3 1.6 10−1 0 1.9 103 322 287 286 366 N
B1 1.7 10−4 0 1.0 106 184 157 171 307 Y
B2 1.7 10−4 0 1.5 104 2.71 2.39 157 304 N
B3 1.7 10−4 1 7.1 105 125 116 121 344 Y
C1 1.7 10−4 0 1.1 106 201 173 186 321 Y
C2 1.1 10−2 0 1.6 104 190 163 171 314 Y
C3 1.7 10−4 1 5.0 105 88 82 97 297 N
D1 1.7 10−4 0 1.3 106 236 206 214 336 Y
D2 1.1 10−2 0 2.0 104 236 205 214 334 Y
D3 1.7 10−4 1 7.9 105 139 129 137 350 Y

The framework is a standard CDM model with
H0 = 50 km s−1 Mpc−1, Ω = 1, and σ8 = 0.7.
The particle masses are equal, and the total number
of particles for each simulation is (2.0 − 2.1) × 106.
For further details, see FM01. The ending redshift,
zend > 0, is determined so that the truncation out-
side the sphere does not influence the profile around
r200. Then the data listed in Table 3 do not make a
homogeneous set, as simulations related to zend = 0
satisfy a different condition as compared with situ-
ations where zend > 0. To this aim, computations
related to zend = 0 would have been continued until
the above mentioned condition is eventually satisfied
at some zend < 0 in the future.

Values of some relevant parameters related
to simulations with high resolution, performed by
KLA01, are listed in Table 4. The framework is
a ΛCDM model with H0 = 70 km s−1 Mpc−1,
Ω0 = 1 − Λ0 = 0.3, and σ8 = 0.9. All simulations
were started at zstart = 60. The twelve runs are,
in fact, three sets of simulations of only four haloes
with resolution varied in each set. Though they can-
not be considered as twelve independent runs, they
may still be conceived as measures of the same phys-
ical quantity, using different methods. For further
details, see KLA01.

It is worth noting that the virial radius in
KLA01 is not defined as the radius, r200, within
which the mean density is 200 times the critical
density, as was done, e.g. by NFW97 and FM01.
On the other hand, the virial radius is included as
the radius, rvir, within which the mean density is
equal to the density predicted by the top-hat model,
ρ̄vir = δTHΩ0ρcrit, where δTH is the density excess
predicted by the top-hat model and ρcrit is the crit-
ical density. In the case of Ω0 = 0.3 cosmologies, it
can be seen that rvir ≈ 1.3r200 (KLA01).

In general, the scaled radius, Ξ (or concen-
tration with regard to NFW density profiles), is
lowered for increasing mass (constant redshift) and
redshift (constant mass). The mass range is large
(6 · 1011 < M/M� ≤ 8 · 1014) for FM01 simulations,
but the use of a CDM cosmological model makes the
concentration mildly depend on the mass (at con-
stant redshift). On the other hand, the concentration
is decreased for low-mass haloes, which virialize ear-
lier, and increased for high-mass haloes, which virial-
ize later. The net effect is an even milder dependence
of the concentration on the mass.

In any case, it can be said that the intrinsic
spread in concentration is dominant over the system-
atic change in the mean value of the concentration
on a mass bin (e.g. Bullock et al. 2001), across
the entire mass ranges covered by FM01 and KLA01
simulations. Accordingly, the fitting, scaled density
profile may be considered, to an acceptable extent,
as related to an invariant scaled radius, Ξ.

The following inequalities may be useful for
testing the intrinsic spread of some data listed in
Table 3:

M−
200 ≤ M200 ≤ M+

200 ; (21a)

ρ̄−200 ≤ 200ρcrit(zend) ≤ ρ̄+
200 ; (21b)

ρ̄−200 ≤ ρ̄200 ≤ ρ̄+
200 ; (21c)

κ−
200 ≤ κ200 ≤ κ+

200 ; (21d)

M∓
200 = (N200 ∓ ∆N200)(m ∓ ∆m) ; (21e)

ρ̄∓200 = ρ̄200

[

1 ∓ ∆M200/M200

(1 ± ∆r200/r200)3

]

; (21f)

κ∓
200 = (δ ∓ ∆δ)

r200 ∓ ∆r200

kpc

(

M±
200

M10

)−1

; (21g)
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ρ̄200 =
3

4π

M200

r3
200

; (21h)

ρcrit(z) = 0.691785 10−8(1 + z)3M10kpc−3 ; (21i)

κ200 = δ1/2

(

r200

kpc

)3/2(
M200

M10

)−1

; (21j)

where z is the redshift, M10 = 1010M� and, in gen-
eral, ∆η = 5 · 10−n−1 is the uncertainty assumed for
η = u 10−n, 0 ≤ u < 10. Upper and lower values are
listed in Table 5.

A positive answer to a question mark therein,
with regard to the parameter on the left of the col-
umn under consideration, means that the related in-
equalities, among (21a) and (21d), are satisfied, and
vice versa.

Similarly, for testing the intrinsic spread of
masses listed in Table 4:

M−
vir ≤ Mvir ≤ M+

vir ; (22a)

M∓
vir = (Nvir ∓ ∆Nvir)(m ∓ ∆m) ; (22b)

where, in general, ∆η = 5 ·10−n−1 is the uncertainty
assumed for η = u 10−n, 0 ≤ u < 10. The upper
and lower values are also listed in Table 4. A posi-
tive answer to the question mark therein means that
the inequality (22a) is satisfied, and vice versa.

All the data produce an acceptable intrinsic
spread, with the exception of run 2M0, in FM01,
and run B2, in KLA01, which exhibit a substantial
inconsistency all the cases. The larger discrepancies
can be due to nothing but printing errors. Accord-
ingly, the value M200/M10 = 38, also deduced from
FM01, is taken rather than 66, to run 2M0, and the
value m/M10 = 1.1 10−2, also inferred from KLA01,
is taken rather than 1.7 10−4, to run B2.

Table 5. Comparison between (i) the values of M200 and the upper and lower values of N200m, as deduced
from the data listed in Table 3; (ii) the value of κ200 as deduced from the data listed in Table 3 and the
related upper and lower values, using Eqs. (21g) and (21j), respectively; and (iii) the values of 200ρcrit(zend)
calculated using Eq. (21i), the upper and lower value of ρ̄200 = 3N200m/(4πr3

200), and the values of ρ̄200 =
3M200/(4πr3

200), as deduced from the data listed in Table 3. A positive answer in the question mark column
means that the related inequalities, among Eqs. (21a) and (21d), are satisfied for the values listed on the
same lines of the corresponding columns. The related, explicit expressions, are shown by Eqs. (21e)-(21j).

run M200

M10

(

N200m
M10

)+ (

N200m
M10

)−
? κ200 κ+

200 κ−
200 ?

16M0 26000 26632 25758 Y 2.70 2.92 2.46 Y
16M1 78000 77403 76123 N 2.38 2.69 2.19 Y
16M2 80000 81325 80002 N 1.90 2.04 1.74 Y
8M0 2800 2796 2722 N 2.37 2.51 2.32 Y
8M1 9000 9074 8955 Y 2.15 2.24 2.06 Y
8M2 7700 7768 7667 Y 1.39 1.42 1.37 Y
4M0 270 266 260 N 1.74 1.91 1.66 Y
4M1 800 808 800 Y 2.04 2.14 1.93 Y
4M2 660 666 659 Y 2.02 2.10 1.92 Y
2M0 66 38 38 N 1.25 2.20 2.14 N
2M1 110 120 110 Y 2.06 2.08 1.86 Y
2M2 100 115 106 N 1.72 1.63 1.48 N

run 200ρcrit(zend)
M10kpc−3

ρ̄+

200

M10kpc−3

ρ̄−

200

M10kpc−3 ? ρ̄200

M10kpc−3 ?

16M0 1.38 10−6 1.41 10−6 1.15 10−6 Y 1.26 10−6 Y
16M1 1.38 10−6 1.42 10−6 1.24 10−6 Y 1.35 10−6 Y
16M2 1.38 10−6 1.50 10−6 1.30 10−6 Y 1.38 10−6 Y
8M0 5.46 10−6 6.23 10−6 5.70 10−6 N 6.04 10−6 Y
8M1 5.99 10−6 5.93 10−6 5.61 10−6 N 5.76 10−6 Y
8M2 5.56 10−6 5.52 10−6 5.22 10−6 N 5.36 10−6 Y
4M0 2.43 10−5 3.25 10−5 2.52 10−5 N 2.93 10−5 Y
4M1 2.43 10−5 2.60 10−5 2.22 10−5 Y 2.39 10−5 Y
4M2 1.47 10−5 1.60 10−5 1.38 10−5 Y 1.48 10−5 Y
2M0 4.12 10−5 3.90 10−5 3.72 10−5 N 6.61 10−5 N
2M1 4.53 10−5 4.75 10−5 4.20 10−5 Y 4.28 10−5 Y
2M2 3.04 10−5 3.15 10−5 2.82 10−5 Y 2.70 10−5 N
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Table 6. The scaled, virialized radius related to NFW density profiles, (ξvir)NFW, the scaling radius related
to NFW density profiles, (r0)NFW, the mean density inside the virialized configuration, ρ̄vir, and the dimen-
sionless parameters, δ−1 and κvir, taken from twelve runs in KLA01 or deduced from Eqs. (5), (7) and (8).

run (ξvir)NFW
(r0)NFW

kpc
ρ̄vir

M10kpc−3 δ−1 κvir

A1 17.4 21.1 1.38 10−6 2.68 16.9
A2 16.0 23.3 1.38 10−6 3.05 14.9
A3 16.6 22.0 1.39 10−6 2.94 15.8
B1 15.6 19.7 1.41 10−6 5.51 14.4
B2 16.5 18.4 1.33 10−6 5.66 15.6
B3 12.3 28.0 7.10 10−7 25.0 10.1
C1 11.2 28.7 1.33 10−6 10.3 8.74
C2 9.8 32.0 1.32 10−6 14.7 7.15
C3 11.9 25.0 8.84 10−7 26.7 9.57
D1 11.9 28.2 1.35 10−6 7.95 9.57
D2 13.4 24.9 1.37 10−6 6.17 11.4
D3 9.5 36.8 7.64 10−7 33.7 6.83

Table 7. The fitting mass, M , the scaling density, radius, mass, ρ0, r0, M0, and the ratios of three
parameters related to simulated haloes to their fitting counterparts, κ200/κ, M200/M , r200/R, in connection
with NFW and MOA density profiles, and twelve runs from FM01.

run M
M10

ρ0

M10kpc−3
r0

kpc
M0

M10

κ200

κ
M200

M
r200

R

NFW
16M0 2.37 104 8.69 10−5 1.56 102 1.39 103 1.17 1.10 1.18
16M1 7.64 104 6.74 10−5 2.51 102 4.48 103 1.03 1.02 1.04
16M2 9.09 104 3.78 10−5 3.23 102 5.33 103 0.824 0.880 0.807
8M0 2.75 103 3.00 10−4 5.04 101 1.61 102 1.03 1.02 1.03
8M1 9.41 103 2.19 10−4 8.44 101 5.52 102 0.932 0.957 0.926
8M2 1.24 104 6.11 10−5 1.37 102 6.59 102 0.603 0.685 0.554
4M0 3.27 102 6.29 10−4 1.94 101 1.92 101 0.754 0.825 0.728
4M1 8.64 102 7.94 10−4 2.49 101 5.07 101 0.886 0.925 0.876
4M2 7.19 102 4.78 10−4 2.76 101 4.21 101 0.877 0.918 0.865
2M0 3.94 101 1.49 10−3 7.18 100 2.31 100 0.943 0.964 0.938
2M1 1.18 102 1.45 10−3 1.04 101 6.94 100 0.893 0.930 0.884
2M2 1.22 102 5.62 10−4 1.45 101 7.17 100 0.746 0.818 0.719

MOA
16M0 2.22 104 1.58 10−5 3.40 102 2.60 103 1.28 1.17 1.31
16M1 7.17 104 1.22 10−5 5.48 102 8.41 103 1.13 1.09 1.15
16M2 8.62 104 6.76 10−6 7.09 102 1.01 104 0.903 0.928 0.889
8M0 2.58 103 5.43 10−5 1.10 102 3.03 102 1.13 1.09 1.15
8M1 8.87 103 3.55 10−5 1.85 102 1.05 103 1.02 1.01 1.02
8M2 1.10 104 1.06 10−5 3.08 102 1.30 103 0.661 0.698 0.597
4M0 3.13 102 1.12 10−4 4.28 101 3.68 101 0.826 0.863 0.798
4M1 8.17 102 1.43 10−4 5.43 101 9.59 101 0.972 0.980 0.968
4M2 6.79 102 8.59 10−5 6.05 101 7.97 101 0.961 0.972 0.955
2M0 3.71 101 8.60 10−6 1.57 101 4.36 100 1.03 1.02 1.04
2M1 1.12 102 2.61 10−4 2.29 101 1.31 101 0.979 0.985 0.976
2M2 1.17 102 9.98 10−5 3.20 101 1.37 101 0.817 0.856 0.788
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Table 8. The fitting mass, M , the scaling density and mass, ρ0, and M0, and the ratios of three parameters
related to simulated haloes, to their fitting counterparts, κvir/κ, Mvir/M , rvir/R, in connection with NFW
and MOA density profiles, and twelve runs from KLA01.

run M
M10

ρ0

M10kpc−3
M0

M10

κvir

κ
Mvir

M
rvir

R

NFW
A1 254 3.08 10−4 12.1 1.46 1.13 1.29
A2 276 2.49 10−4 13.2 1.29 1.08 1.18
A3 259 2.76 10−4 12.4 1.36 1.10 1.23
B1 159 2.39 10−4 7.62 1.24 1.07 1.15
B2 143 2.60 10−4 6.82 1.35 1.10 1.22
B3 127 6.62 10−5 6.06 0.869 0.954 0.910
C1 205 9.93 10−5 9.79 0.755 0.908 0.829
C2 202 7.02 10−5 9.68 0.618 0.844 0.725
C3 103 7.59 10−5 4.94 0.827 0.937 0.881
D1 228 1.16 10−4 10.9 0.827 0.937 0.881
D2 215 1.58 10−4 10.3 0.988 0.996 0.992
D3 165 3.77 10−5 7.89 0.590 0.830 0.703

MOA
A1 236 5.63 10−5 22.6 1.48 1.21 1.48
A2 258 4.54 10−5 24.6 1.36 1.16 1.36
A3 241 5.02 10−5 23.1 1.41 1.18 1.41
B1 149 4.35 10−5 14.2 1.32 1.15 1.32
B2 133 4.74 10−5 12.7 1.40 1.18 1.40
B3 118 1.20 10−5 11.3 1.04 1.02 1.04
C1 191 1.81 10−5 18.3 0.950 0.972 0.948
C2 190 1.28 10−5 18.1 0.837 0.901 0.829
C3 96.6 1.38 10−5 9.23 1.01 1.00 1.01
D1 213 2.10 10−5 20.4 1.01 1.00 1.01
D2 200 2.88 10−5 19.2 1.13 1.07 1.13
D3 155 6.83 10−6 14.8 0.812 0.884 0.802

Regarding to NFW density profiles, the scaled
radius, ξvir = rvir/r0, is provided for each run in
KLA01, and the mean density of the virialized con-
figuration, ρ̄vir = 3Mvir/(4πr3

vir), together with the
scaling radius, r0, may be deduced from the results of
Table 4. The above mentioned parameters are listed
in Table 6, together with two dimensionless param-
eters, δ and κvir, which are deduced from Eqs. (5),
(7), and (8). It is apparent that the twelve runs cor-
respond to virial masses of the same order.

At this stage, the deviation of simulated, dark
matter haloes, from their fitting counterparts, may
be analysed along the following lines.
(i) Select a fitting halo among NFW and MOA

density profiles.
(ii) Select a simulated halo among the twelve runs

in Tables 3 and 4.
(iii) Calculate the fitting mass, M , using Eqs. (4),

(5), (6), and the related values of Mtrn and
rtrn, trn = 200, vir, listed in Tables 3 and 4.
For a formal derivation, see Appendix B.

(iv) Calculate the values of the scaling density, ρ0,

the scaling radius, r0, and the scaling mass,
M0. It is worth remembering the last is the
mass of a homogeneous region, with same den-
sity and boundary as the reference isopycnic
surface, (r0, ρ0).

(v) Calculate the scaled mass, Mtrn/M0, the
scaled radius, rtrn/r0, the scaled density,
ρ̄trn/ρ0, and the dimensionless parameter,
κtrn, trn = 200, vir.

(vi) Return to (ii).
(vii) Return to (i).

Simulated haloes may be characterized by four
scaled parameters, Mtrn/M0, rtrn/r0, ρ̄trn/ρ̄0, and
κtrn. Their fitting counterparts are νM , Ξ, νρ̄, and κ,
respectively, which have been listed in Table 2. The
fitting mass, M , the scaling density, radius, mass,
ρ0, r0, M0, and the ratios of three parameters re-
lated to simulated haloes, to their fitting counter-
parts, κtrn/κ, Mtrn/M , rtrn/R, are listed in Tables
7 and 8, in connection with both NFW and MOA
density profiles, for the twelwe runs from FM01 and
KLA01, respectively.
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4. DISCUSSION

The deviation of simulated dark matter haloes
from their fitting counterparts can be seen in Figs. 1,
2, 3, 4, and in Figs. 5, 6, 7, 8, in connection with
FM01 and KLA01 simulations, respectively. The
following plots are shown: scaled mass, Mtrn/M0,
vs. logarithmic scaled mass, log(Mtrn/M10); scaled
radius, rtrn/r0, vs. logarithmic scaled radius,
log(rtrn/kpc); scaled density, ρ̄trn/ρ0, vs. logarith-

mic scaled density, log[ρ̄trn/(M10kpc−3)]; and dimen-
sionless parameter, κtrn, vs. logarithmic scaled mass,
log(Mtrn/M10); where trn = 200, vir.

The deviation of the above mentioned, scaled
parameters, from their fitting counterparts, are
clearly shown.

The mean value, η̄, the standard deviation
from the mean value, σsη̄ , and the standard devi-
ation from the standard deviation from the mean
value, σsµ̄, which are expressed as (e.g. Oliva and
Terrasi 1976, Chap. V, § 5.6.3):

η̄ =
1

n

n
∑

i=1

ηi ; (23)

σsη̄ =

[

1

n

1

n − 1

n
∑

i=1

(ηi − η̄)2

]1/2

; (24)

σsµ̄ =
σsη̄√
2n

; µ̄ = σsη̄ ; (25)

where n = 12; while η = Mtrn/M0, rtrn/r0, ρ̄trn/ρ0,
κtrn; trn = 200, vir; and η̄, σsη̄ , σsµ̄, are shown by
the vertical bars in Figs. 1-8.

Numerical values of η̄, σsη̄ , σsµ̄, obtained, re-
spectively, from Eqs. (23), (24), and (25), are listed
in Table 9, together with their fitting counterparts,
η∗, which have been represented as horizontal lines
in Figs. 1-8 and listed in Table 2, in connection with
NFW and MOA density profiles.

It is apparent that the following inequalities
hold:

η̄ − uσsη̄ − uσsµ̄ < η∗ < η̄ + uσsη̄ + uσsµ̄ ; (26)

where u = 2 or 1 for NFW and MOA density profiles,
respectively, in connection with FM01 simulations,
and u = 1 or 2 for NFW and MOA density profiles,
respectively, in connection with KLA01 simulations.
Then the best fitting density profile (between NFW
and MOA, in the case under discussion) may be cho-
sen as minimizing the ratio, |xη |/σs η = |η−η∗|/σs η ,
for the scaled parameter of interest.

Fig. 1. Deviation of simulated dark matter haloes from their fitting counterparts, with respect to the scaled
virial mass M200/M0, for both NFW (top) and MOA (bottom) density profiles. Fitting haloes lie on the
horizontal line, while simulated haloes are represented by different symbols. The vertical bar is centred on
the mean value of plotted data, with respect to the ordinates (and no connection with the abscissae), and
is limited by the standard deviation from the mean, without (inner boundary) and with (outer boundary)
addition of about twice the standard deviation from the standard deviation from the mean, deduced from
Eqs. (23), (24), and (25), respectively. Captions of symbols on the right correspond to FM01 runs listed in
Tables 3, 5, and 7.
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Fig. 2. Deviation of simulated dark matter haloes from their fitting counterparts, with respect to the scaled
radius r200/r0, for both NFW (top) and MOA (bottom) self-similar, universal density profiles. Other captions
as in Fig. 1.

Fig. 3. Deviation of simulated dark matter haloes from their fitting counterparts, with respect to the
scaled density ρ̄200/ρ0, for both NFW (top) and MOA (bottom) self-similar, universal density profiles. Other
captions as in Fig. 1.
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Fig. 4. Deviation of simulated dark matter haloes from their fitting counterparts, with respect to the
dimensionless parameter κ200, for both NFW (top) and MOA (bottom) self-similar, universal density profiles.
Other captions as in Fig. 1.

Table 9. The mean value, η̄, the standard deviation from the mean value, σsη̄ , and the standard deviation
from the standard deviation from the mean value, σsµ̄, where η = Mtrn/M0, rtrn/r0, ρ̄trn/ρ0, κtrn, trn =
200, vir, evaluated from simulated haloes data from Tables 3, 5, 7 (FM01), and 4, 6, 8 (KLA01). The value
of the related fitting counterparts, η∗ = νM , Ξ, νρ̄, κ, listed in Table 2 are also reported for comparison.
The upper and lower panels are related to FM01 and KLA01 simulations, respectively. The left-hand and
right-hand sides are related to NFW and MOA universal density profiles, respectively.

parameter NFW MOA
η η̄ σsη̄ σsµ̄ η∗ η̄ σsη̄ σsµ̄ η∗

M200/M0 15.69 0.538 0.110 17.05 8.29 0.309 0.0630 8.53
r200/r0 8.09 0.443 0.0902 9.21 3.69 0.209 0.0427 3.81
ρ̄200/ρ0 0.0346 0.00564 0.00115 0.0218 0.195 0.0328 0.00669 0.154
κ200 2.05 0.100 0.0205 2.30 2.05 0.100 0.0205 2.10

Mvir/M0 20.74 0.632 0.129 20.92 11.11 0.343 0.0701 10.46
rvir/r0 13.51 0.807 0.165 13.51 5.94 0.355 0.0723 5.44
ρ̄vir/ρ0 0.0101 0.00155 0.000317 0.00849 0.0556 0.00855 0.00174 0.0651
κvir 11.75 1.03 0.211 11.57 11.75 1.03 0.211 10.14

It can also be shown that a necessary condition
for the detectability of accidental errors, ∆η ≤ ση , is
satisfied for any choice of η listed in Table 9. More
specifically, ∆η and ση represent the sensitivity er-
ror of the simulation and the rms error, respectively,
with regard to η. For a formal demonstration, see
Appendix C.

It is apparent that NFW density profiles re-
produce FM01 simulations to a lesser extent than
MOA density profiles, while the contrary holds with
regard to KLA01 simulations, according to the above
mentioned criterion. In any case, a better fit could
be obtained by use of a different scaled density pro-
file, viz. different values of the exponents, (α, β, γ)
appearing in Eq. (1).
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Fig. 5. Deviation of simulated dark matter haloes from their fitting counterparts, with respect to the scaled
virial mass Mvir/M0, for both NFW (top) and MOA (bottom) self-similar, universal density profiles. Fitting
haloes lie on the horizontal line, while simulated haloes are represented by different symbols. The vertical
bar is centred on the mean value of plotted data, with respect to the ordinates (and no connection with the
abscissae), and is limited by the standard deviation of the mean, without (inner boundary) and with (outer
boundary) addition of about twice the standard deviation from the standard deviation from the mean, deduced
from Eqs. (23), (24), and (25), respectively. Captions of symbols on the right correspond to KLA01 runs
listed in Tables 4, 6, and 8.

Fig. 6. Deviation of simulated dark matter haloes from their fitting counterparts, with respect to the scaled
radius rvir/r0, for both NFW (top) and MOA (bottom) self-similar, universal density profiles. Other captions
as in Fig. 5.
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Fig. 7. Deviation of simulated dark matter haloes from their fitting counterparts, with respect to the
scaled density ρ̄vir/ρ0, for both NFW (top) and MOA (bottom) self-similar, universal density profiles. Other
captions as in Fig. 5.

Fig. 8. Deviation of simulated dark matter haloes from their fitting counterparts, with regard to the
dimensionless parameter κvir, for both NFW (top) and MOA (bottom) self-similar, universal density profiles.
Other captions as in Fig. 5.

26



DARK MATTER HALOES: AN ADDITIONAL CRITERION FOR THE CHOICE OF FITTING DENSITY PROFILES

Table 10. The rms errors, ση̄ , the ratios of rms error to the expected value of the related distribution,
ση̄/η∗, the absolute errors, |xη̄ | = |η̄ − η∗|, and the ratios of absolute error to rms error, |xη̄ |/ση̄, where
η = Mtrn/M0, rtrn/r0, ρ̄trn/ρ0, κtrn, trn = 200, vir, deduced from simulated haloes data from Tables 3, 5,
7 (FM01), and 4, 6, 8 (KLA01). Values of parameters related to their fitting counterparts, η∗ = νM , Ξ,
νρ̄, κ, are taken from Table 2. The upper and lower panel are related to FM01 and KLA01 simulations,
respectively. The left-hand and right-hand side are related to NFW and MOA density profiles, respectively.

parameter NFW MOA
η ση̄ ση̄/η∗ |xη̄ | |xη̄ |/ση̄ ση̄ ση̄/η∗ |xη̄ | |xη̄ |/ση̄

M200/M0 1.17 0.0685 1.36 1.16 0.633 0.0742 0.24 0.379
r200/r0 1.10 0.120 1.12 1.02 0.455 0.120 0.12 0.264
ρ̄200/ρ0 0.0635 0.290 0.0128 2.02 0.0440 0.285 0.041 0.932
κ200 0.413 0.179 0.25 0.605 0.377 0.179 0.05 0.133

Mvir/M0 1.24 0.0595 0.18 0.145 0.665 0.0636 0.65 0.977
rvir/r0 1.62 0.120 0 0 0.650 0.120 0.5 0.769
ρ̄vir/ρ0 0.00254 0.299 0.00161 0.634 0.0192 0.295 0.0095 0.495
κvir 2.30 0.179 0.18 0.0783 1.82 0.179 1.61 0.885

4.1 Standard deviations deduced from the
propagation of the errors

Universal density profiles, expressed by
Eq. (1), are currently used in fitting simulated den-
sity profiles (e.g. NFW, FM01, FM03). The choice
of the exponents, (α, β, γ), allows the scaled param-
eters, νM = M/M0, νρ̄ = ρ̄/ρ0, and k, depend on a
single scaled parameter i.e. the scaled radius, Ξ, or
concentration with regard to NFW density profiles.
As the concentration exhibits a lognormal distribu-
tion (e.g. Bullock et al. 2001), and the above men-
tioned parameters may be considered as depending
on the decimal logarithm of the concentration, log Ξ,
the related distribution is expected to be (at least to
a first approximation) normal, via the same proce-
dure which leads to the propagation of the errors.

The corresponding rms errors are:

σΞ = Ξσlog Ξ , (27)

σνM = 3f(Ξ)Ξ3σlog Ξ , (28)

σνρ̄ = 3

∣

∣

∣

∣

f(Ξ) − 1

Ξ3

M

M0

∣

∣

∣

∣

σlog Ξ , (29)

σk =
3

2
kσlog Ξ , (30)

where f(Ξ) is the scaled density, expressed by
Eq. (2), particularized to the scaled radius, ξ = Ξ.
For a formal demonstration, see Appendix D.

A comparison between rms errors, expressed
by the above relations, and standard deviations,
listed in Table 9, requires the following steps.

(a) Assume a rms error of the lognormal distribu-
tion of the concentration as in Bullock el al.
(2001), σlog Ξ = 0.18.

(b) Assume a scaled radius related to the expected
value of the lognormal distribution of the con-
centration, Ξ∗ = exp10(log Ξ)∗, as listed in
Table 9 for each universal density profile and
each set of simulations.

(c) Divide the rms errors, ση , η = Ξ, νM , νρ̄, k,
by the square root of the number of mea-
sures that have been averaged in calculating
the standard deviations from the mean, which
is equal to

√
12.

(d) For a selected, universal density profile and a
selected set of simulations, use the mean val-
ues, η, and their fitting counterparts, η∗, listed
in Table 9.
The rms errors, ση̄ , and the ratios of rms er-

ror to the expected value of the related distribution,
ση̄/η∗, the absolute errors, |xη̄ | = |η̄−η∗|, and the ra-
tios of absolute error to rms error, |xη̄ |/ση̄ , are listed
in Table 10 with respect to FM01 (upper panel) and
KLA01 (lower panel) simulations, related to NFW
(left-hand side) and MOA (right-hand side) univer-
sal density profiles.

The rms errors appear to be systematically
larger than the related standard deviations listed in
Table 9, essentially for the following three orders of
reasons.

Firstly, the statistical significance of the sam-
ples considered is low, owing to the small number of
objects (N = 12). In addition, KLA01 runs make in
fact three sets of simulations of only four dark mat-
ter haloes with resolution varied in each set. For this
reason, they cannot be treated as twelve independent
runs, and a lower standard deviation is expected.

Secondly, the rms errors calculated by use of
Eqs. (27)-(30) need a normal distribution for the re-
lated random variables, which holds to a good ex-
tent only if the fluctuations are sufficiently small, to
neglect higher-order terms with respect to the first
order ones, in the related series developments. For
further details, see Appendix D.

Thirdly, the comparison between rms errors
and standard deviations should be valid only in con-
nection with the cosmological model, and the univer-
sal density profile, used by Bullock et al. (2001) in
building up the statistical sample of simulated dark
matter haloes, from which a lognormal distribution
of the concentration has been deduced, with rms er-
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ror σlog Ξtrn
= 0.18. It needs Λ0 = 0.7, Ω0 = 0.3,

h = 0.7, σ8 = 1.0, and a NFW density profile.
In fact, larger discrepancies occur for FM01 simula-
tions, where Λ0 = 0, Ω0 = 1, h = 0.5, and σ8 = 0.7.
On the other hand, KLA01 simulations were carried
out with the same choice of cosmological parameters
as in Bullock et al. (2001), with the exception of
σ8 = 0.9. Then we expect that a lognormal distribu-
tion of concentration for an assigned mass bin occurs
for any plausible choice of cosmological parameters,
and its expected value and rms error do not change
dramatically for any plausible variation of cosmolog-
ical parameters.

The existence of a lognormal distribution is a
necessary but not sufficient condition for the valid-
ity of the central limit theorem. In this view, the
concentration is related to the final properties of a
simulated halo, which are connected with the ini-
tial conditions, α1, α2,..., αn, by a transformation,
Ξ = α1α2...αn, as in dealing with the process of star
formation, where the stellar mass follows a lognor-
mal distribution (Adams and Fatuzzo 1996, Padoan
et al. 1997). As far as the dark matter haloes within
a fixed mass bin are concerned, an interpretation of
the lognormal distribution, depending on the con-
centration, in terms of the central limit theorem, is
outlined in Appendix E.

It is worth recalling that standard deviations
of scaled parameters from their mean values, have
been deduced directly from the results of simulations,
with respect to a selected, fitting density profile. On
the other hand, rms errors of scaled parameters have
been deduced from their dependence on the (deci-
mal) logarithm of the concentration, log Ξ, and the
lognormal distribution of the concentration.

An inspection of Table 10 shows that the ra-
tio of absolute error to rms error is closer to zero for
MOA density profiles with FM01 simulations, and for
NFW density profiles with KLA01 simulations. This
agrees with the results found using standard devia-
tions from the mean, represented in Figs. 1-8, which
have been deduced directly from simulations, with
respect to a selected, fitting density profile. Then a
valid criterion for the choice of a fitting density pro-
file, in connection with a given set of simulated dark
matter haloes, appears to be the following.

Statistic razor for fitting density profiles
to simulated dark matter haloes. Given
two or more fitting density profiles and a set
of simulated haloes, the best fit is related to
the minimum value of the ratio of the absolute
error to the corresponding standard deviation
from the mean, |xη |/σs η = |η − η∗|/σs η.

4.2 Interpretation in terms of the spherical
top-hat model

The spherical, top-hat model makes a valid
reference for simulated haloes (e.g. Cole and Lacey
1996, KLA01), and for this reason we think that an
interpretation of the dimensionless parameter, δ, in
terms of the spherical top-hat model, may be of some
use. With regard to fitting dark matter haloes, the

combination of Eqs. (5a), (7), and (8) yields:

δ =
4π

3
C3

r Ξ3 ρ̄

M10kpc−3

M

M10
, (31)

which shows the dependence of δ on the product,
ρ̄M .

Regarding the FM01 simulations, an inspec-
tion of Table 3 shows that while the mean density,
ρ̄200, is inversely proportional to the (fiducial) total
mass, M200, the dimensionless parameter, δ, is di-
rectly proportional to M200. It can also be seen there
that the product ρ̄200M200 also increases if M200 does
and vice versa, in agreement with Eq. (31). The pa-
rameter, δ, appears to depend on the mass, M , and
one additional independent parameter, which may
be chosen as the mass excess at the start of simula-
tion, (δM/M)start, or the related mean peak height,
ν̄start = (δM/M)start/ < (δM/M)2start >1/2.

Within the framework of the spherical top-hat
model, the total mass is conserved and the following
relations hold:

ρ̄vir

ρ̄max
=

R3
max

R3
vir

;
ρ̄max

ρ̄rec
=

R3
rec

R3
max

, (32)

where the indices, rec, max, vir, denote recombina-
tion, maximum expansion, virialization, respectively,
and the ratio (Rrec/Rmax)

−1 is a solution of the cubic
equation:

Λrecx
3 +

{

1 − Ωrec

[

1 +

(

δM∗

M

)

rec

]

− Λrec

}

x

+Ωrec

[

1 +

(

δM∗

M

)

rec

]

= 0 ; (33)

where Ω and Λ represent, respectively, the density
parameter related to matter and cosmological con-
stant, and δM∗/M is the mean mass excess within
a spherical volume where the mass of the material
Hubble flow equals M (e.g. Lokas and Hoffman
2001a,b).

The solution to Eq. (33) which is of interest
here, in absence of cosmological constant i.e. Λ → 0,
has to attain the limiting expression (e.g. Peebles
1980, Chap. II, §19a):

Rrec

(Rmax)Λ=0
=

1 − Ω−1
rec + (δM∗/M)rec

1 + (δM∗/M)rec

≈
(

δM∗

M

)

rec

; (34a)

|1 − Ω−1
rec| <<

(

δM∗

M

)

rec

<< 1, (34b)

where the mass excess, at recombination epoch, has
substantial contributions from both the growing and
the decreasing modes of the density perturbation.
For further details see, e.g. Caimmi et al. (1990).

The combination of Eqs. (32) and (34) yields:

ρ̄max

ρ̄rec
= ζmax

[(

δM∗

M

)

rec

]3

, (35a)
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ζmax =

[

(Rmax)Λ=0

Rmax

]3

, (35b)

|1 − Ω−1
rec| <<

(

δM∗

M

)

rec

<< 1, (35c)

and, in addition,

ρ̄vir

ρ̄max
= ζvir , 1 ≤ ζvir ≤ 8 , (36)

where the upper limit corresponds to zero kinetic en-
ergy at maximum expansion, and the lower limit is
related to a necessary condition for maximum ex-
pansion, Rvir ≤ Rmax. For further details see e.g.
Caimmi et al. (1990). Finally, the combination of
Eqs. (32), (35), and (36), produces:

ρ̄vir = ζmaxζvir(ρh)rec

[(

δM∗

M

)

rec

]3

, (37a)

|1 − Ω−1
rec| <<

(

δM∗

M

)

rec

<< 1 , (37b)

where (ρh)rec = ρ̄rec/[1+(δM∗/M)rec] is the density
of the material Hubble flow at recombination epoch.
The above relation may be cast into the equivalent
form:

ρ̄vir =
125

72π
ζmaxζvir

H2
0Ω0

G

[(

δM

M

)

0

]3

; (38a)

|1 − Ω−1
rec| <<

(

δM∗

M

)

rec

<< 1 , (38b)

where (δM/M)0 = (3/5)(δM∗/M)rec(1+zrec) stands
for the present-day mass excess of the growing mode
predicted by the top-hat model, in a flat cosmology
with a vanishing quintessence or, in particular, cos-
mological constant. For a formal derivation, see Ap-
pendix A.

The combination of Eqs. (31) and (38) yields:

δ = Cδζmax

[(

δM

M

)

0

]3
M

M10
, (39a)

Cδ =
125

54
ζvirC

3
r Ξ3 H2

0Ω0

G

kpc3

M10
, (39b)

|1 − Ω−1
rec| << 1 , (39c)

where the coefficient Cδ may be evaluated numeri-
cally by use of Eqs. (5b), (5c), (10), and (36), taking
the value of the scaled radius, Ξ, from Table 2, and
keeping in mind that H0 = 50 and 70 km s−1 Mpc−1

have been assumed in FM01 and KLA01 simulations,
respectively. The result is:

7.12786 10−7 ≤ (Cδ)NFW,FM ≤ 5.70229 10−6, (40a)

5.93342 10−7 ≤ (Cδ)MOA,FM ≤ 4.74673 10−6, (40b)

1.05903 10−5 ≤ (Cδ)NFW,KLA ≤ 8.47224 10−5, (40c)

8.12553 10−6 ≤ (Cδ)MOA,KLA ≤ 6.50043 10−5,(40d)

with both NFW and MOA density profiles, related
to both FM01 and KLA01 simulations.

Regarding the FM01 (σ8 = 0.7) and KLA01
(σ8 = 0.9) simulations, the mass enclosed within a
spherical region of radius R8 = 8h−1 Mpc is:

(M8)FM = 2.021868 105M10 , (41a)

(M8)KLA = 4.842291 104M10 ; (41b)

for a formal derivation, see Appendix A. The nor-
malization of top-hat, spherical perturbations with
same spectrum as in Gunn (1987), to the above val-
ues, demands a multiplication of the rms mass excess
plotted in Gunn (1987) by a factor of 14/13 and 3/10,
respectively. The related values, together with some
other parameters which are characteristic of top-hat,
spherical perturbations, are listed in Table 11.

Table 11. The mass (in decimal logarithm and unit M10 = 1010M�), the present-day rms mass excess,
σ0=< (δM/M)20 >1/2, and the parameters, b1 = ν̄recζmaxRmax/kpc, b2 = δ/(ν̄3

recCδζmax), related to top-hat,
spherical perturbations with same mass spectrum as in Gunn (1987), but normalized to cosmological models
assumed in FM01 and KLA01 simulations, respectively. The plot of the mass spectrum (Gunn 1987) has
been assumed to reproduce only the growing mode.

mass FM01 KLA01

log M
M10

σ0 b1 b2 log b2 σ0 b1 b2 log b2

-1 15.08 1.00 101 3.43 102 2.535 4.200 1.72 101 7.41 100 0.870
0 11.85 2.75 101 1.66 103 3.221 3.300 4.73 101 3.59 101 1.555
1 8.61 8.14 101 6.38 103 3.805 2.400 1.40 102 1.38 102 2.141
2 5.71 2.64 102 1.86 104 4.270 1.590 4.55 102 4.02 102 2.604
3 3.66 8.89 102 4.90 104 4.690 1.020 1.53 103 1.06 103 3.026
4 2.05 3.42 103 8.61 104 4.935 0.570 5.90 103 1.85 103 3.268
5 0.937 1.61 104 8.23 104 4.915 0.261 2.77 104 1.77 103 3.249
6 0.345 9.43 104 4.11 104 4.613 0.096 1.62 105 8.84 102 2.947
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Fig. 9. The dimensionless parameter δ vs. the fitting mass M for top-hat, spherical perturbations, with
no (open circles) and maximum allowed (crosses) acquisition of angular momentum, according to Eqs. (40b)
and (40c), in connection with MOA (top panel) and NFW (bottom panel) density profiles. For each mass
and class of symbols, values from down to up are related to mean peak heights at recombination epoch,
ν̄rec = 1, 2, 3, 4, respectively. The mass of the critical density perturbation, for which the turnaround radius
is infinite, is marked by a vertical line, from the left to the right for increasing peak height (bottom panel).
Values related to FM01 (top panel) and KLA01 (bottom panel) simulations are also represented, with same
symbol captions as in Figs. 1-4 and 5-8, respectively. Passing from NFW to MOA density profile, for each
set of simulations, would lower values related to top-hat, spherical perturbations by about one dex, and vice
versa.

The parameter δ expressed by Eqs. (39), is
plotted as a function of the mass, for lower and up-
per values of the factor, Cδ expressed by Eqs. (40),
and mean peak heights ν̄rec = 1, 2, 3, 4, in Fig. 9,
where the values deduced from FM01 (top panel) and
KLA01 (bottom panel) simulations, in connection
with MOA (top panel) and NFW (bottom panel)
density profiles, respectively, are also represented.

In both cases it is apparent that, for increas-
ing masses, simulated haloes correspond to fitting,
top-hat haloes with increasing (mean) peak heights.

The occurrence of cosmological constant
changes the value of the treshold, beyond which den-
sity perturbations are expanding forever (e.g. Lokas
and Hoffman 2001a,b). The mass of the critical den-
sity perturbation, related to an infinite turnaround
radius, is marked by a vertical line in Fig. 9 (bottom
panel), from the left to the right for increasing peak
heights.

Keeping in mind that, for a fixed peak, the
upper curves are related to no acquisition of angu-
lar momentum (ζvir = 8) and the lower curves are
related to maximum, allowed acquisition of angular
momentum (ζvir = 1), the correspondence between
simulated and fitting, spherical, top-hat haloes im-
plies an efficient acquisition of angular momentum,

especially for low masses. On the other hand, with
the FM01 runs, simulated haloes - especially at low
masses - appear to be consistent with fitting spher-
ical top-hat haloes with mean peak heights within

the range 1
<∼ ν̄rec

<∼ 2, contrary to what would be

expected, ν̄rec
>∼ 2; with the KLA01 runs, the above

mentioned discrepancy disappears.

5. CONCLUDING REMARKS

Simulated dark matter haloes were fitted by
self-similar, universal density profiles, where the
scaled parameters depend only on a scaled (trunca-
tion) radius, Ξ = R/r0, which, in turn, was sup-
posed to be independent of the mass and the forma-
tion redshift. The further assumption of a lognormal
distribution (for a selected mass bin) of the scaled
radius, or concentration, in agreement with the data
from a large statistical sample of simulated haloes
(Bullock et al. 2001), has allowed (at least in first
approximation) a normal or lognormal distribution
for other scaled parameters, via the same procedure
which leads to the propagation of the errors.

A criterion for the choice of the best fitting
density profile has been proposed, with respect to a
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set of high-resolution simulations, where some aver-
aging procedure on scaled density profiles has been
performed, in connection with a number of fitting
density profiles. To this aim, a minimum value of
the ratio |xη |/σs η = |η − η∗|/σs η was required to
yield the best fit; here η is the arithmetic mean over
the whole set, η∗ is its counterpart related to the
fitting density profile, σs η is the standard deviation
from the mean, and η is a selected, scaled i.e. di-
mensionless parameter.

The above criterion has been applied to a pair
of sets, each made of a dozen of high-resolution sim-
ulations, FM01 (Fukushige and Makino 2001) and
KLA01 (Klypin et al. 2001), in connection with two
currently used density profiles, NFW (e.g. Navarro
et al. 1997) and MOA (e.g. Moore et al. 1999),
where the dependence of the scaled radius on the
mass and the formation redshift may be neglected
in a first approximation. With regard to FM01 and
KLA01 samples, the best fits turned out to be MOA
and NFW, respectively. In addition, the above re-
sults were found to hold also in dealing with rms er-
rors derived via the propagation of the errors, with
respect to the distributions of scaled parameters.
The sensitivity error of simulations has also been es-
timated and shown to be less than the related, stan-
dard deviation, that is a necessary condition for de-
tectability of accidental errors.

Some features of the early evolution of dark
matter haloes represented by fitting density profiles,
have been discussed in the limit of the spherical top-
hat model. Though the related matter distributions
have appeared to be poorly representative of simu-
lated haloes, unless the (mean) peak height is an in-
creasing function of the mass, the results were shown
to be consistent, provided a considerable acquisition
of angular momentum took place during the expan-
sion phase.
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Appendices

A. Some properties of spherical top-hat den-
sity perturbations

In a special class of QCDM cosmological mod-
els, where quintessence obeys the equation of state
pΨ = wρΨ relating its density ρΨ to its pressure pΨ
via a time-independent parameter or quintessence in-
dex w, −1 ≤ w < 0, the following relations hold (e.g.
Lokas 2002, Lokas and Hoffman 2002):

da

dt
=

H0

φ(a)
; a =

R

R0
=

1

1 + z
; (42)

φ(a) =
[

1 + Ω0

(

a−1 − 1
)

+ Ψ0

(

a−1−3w − 1
)]−1/2

;

(43)

Ω(z) = Ω0(1 + z)3
H2

0

H2(z)
; (44)

Ψ(z) = Ψ0(1 + z)3(1+w) H2
0

H2(z)
; (45)

H2(z)

H2
0

= (1 + z)2(1 + Ω0z) + Ψ0(1 + z)3(1+w)

×
[

1 − (1 + z)−(1+3w)
]

; (46)

where a is the scale factor normalized to unity at
present, z is the redshift, Ω and Ψ are the density pa-
rameter of matter and quintessence, respectively, H
is the Hubble parameter, and the index 0 denotes the
current time. In the limit of vanishing quintessence,
Eqs. (42), (44), and (46) reduce to their counterparts
in cosmological models with sole matter and radia-
tion (e.g. Zeldovich and Novikov 1982, Chap. III,
§4). The special case, w = −1, corresponds to the
cosmological constant.

Equivalent expressions of Eqs. (44) and (45),
obtained by using (46), are:

Ω−1(z) = 1 +
1

1 + z

1 − Ω0 − Ψ0

Ω0
+ (1 + z)3w Ψ0

Ω0
;

(47)

Ψ−1(z) = 1 +
Ω0

Ψ0
(1 + z)−3w

×
[

1 +
1

1 + z

1 − Ω0 − Ψ0

Ω0

]

; (48)

and Eq. (47) allows the validity of the inequality:

1 +
1

1 + z

1 − Ω0 − Ψ0

Ω0 + Ψ0
≤ Ω−1(z)

≤ 1 +
1

1 + z

1 − Ω0

Ω0
; −1 ≤ w ≤ −1

3
; (49)

which shows that the evolution of the matter den-
sity parameter in a cosmological model defined by

assigned values of (Ω0, Ψ0), is comprised between its
counterparts related to cosmological models defined
by (Ω0, 0) and (Ω0 + Ψ0, 0), respectively.

A detailed analysis involving the solution of a
third-degree equation yields the following final result
for the function, φ(a), defined by Eq. (43)

[

1 + Ω0

(

a−1 − 1
)]−1/2 ≤ φ(a)

<

[

1 +
Ω0

2

(

a−1 − 1
)

]−1/2

; Ω0 ≥ 0.25 ; (50)

it shows that the evolution of the scale factor in
a cosmological model defined by assigned values of
(Ω0, Ψ0), is comprised between its counterparts re-
lated to cosmological models defined by (Ω0/2, 0)
and (Ω0, 0), respectively, provided Ω0 ≥ 0.25.

A detailed analysis involving the solution of
a transcendental equation yields the following final
result for the Hubble parameter, H(z), defined by
Eq. (46)

1

2
(1 + z)2(1 + Ω0z) <

H2(z)

H2
0

≤ (1 + z)2(1 + Ω0z) ; Ω0 ≥ 0.25 ; (51)

it shows that the evolution of the Hubble parame-
ter in a cosmological model defined by assigned val-
ues of (Ω0, Ψ0, H0) is comprised between its coun-
terparts related to cosmological models defined by
(Ω0, 0, H0) and (Ω0, 0, H0/

√
2), respectively, pro-

vided Ω0 ≥ 0.25.
Cosmological models with sole matter and ra-

diation evolve at the same rate in the limit |1 −
Ω−1| << 1 i.e. at early times (e.g. Zeldovich and
Novikov 1982, Chap. III, §4) and, owing to inequal-
ities (49), (50), and (51), the same holds for cos-
mological models with quintessence. In the above
mentioned limit, the matter density of the Hubble
flow, ρh, reads (e.g. Peebles 1993, Chap. II, §13):

ρh =
3

8π

H2
0Ω0

G
(1 + z)3 ; (52)

where G is the constant of gravitation.
The combination of Eqs. (37) and (52) yields:

ρ̄vir =
3

8π
ζmaxζvir

H2
0Ω0

G
(1 + zrec)

3

[(

δM∗

M

)

rec

]3

;

|1 − Ω−1
rec| <<

(

δM∗

M

)

rec

<< 1 ; (53)

in the framework of the top-hat spherical model, re-
lated to a flat universe with vanishing quintessence,
the growing mode of the density perturbation attains
the present-day value (e.g. Peebles 1980, Chap. II,
§15):

(

δM

M

)

0

=
3

5

(

δM∗

M

)

rec

(1 + zrec) ; (54)
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and the combination of Eqs. (53) and (54) yields
Eq. (38).

In addition, the combination of Eqs. (34), (35),
(52), and (54) gives:

ν̄rec ζ1/3
maxRmax =

3

5

(

H2
0Ω0

2G

)−1/3

M1/3

×
〈

[(

δM

M

)

0

]2
〉−1/2

; |1 − Ω−1
rec| << 1 ; (55)

where the mass excess has been expressed as the
product of the present-day rms mass excess and the
peak height at recombination epoch averaged over
the whole volume, that is:

(

δM

M

)

rec

= ν̄rec

〈

[(

δM

M

)

rec

]2
〉1/2

; (56)

for more details see e.g. Caimmi et al. (1990). Of
course, Eq. (55) makes a lower limit to the product,
ν̄recRmax, as Eq. (34) holds in the limit of a vanishing
quintessence.

On the other hand, in open or flat universes,
density perturbations below a treshold are destined
to expand forever. In the special case of cosmolog-
ical constant, the critical value is (e.g. Lokas and
Hoffman 2001a,b):
[(

δM

M

)

rec

]

∞
=

U(Λrec)

Ωrec
− 1 ; (57a)

U(Λ) = 1 +
5

4
Λ +

3

4

Λ(8 + Λ)

T (Λ)
+

3

4
T (Λ) ; (57b)

T (Λ) = Λ1/3
[

8 − Λ2 + 20Λ + 8(1 − Λ)3/2
]1/3

;(57c)

where the turnaround occurs at an infinite radius.
With FM01 and KLA01 simulations, the

present-day rms mass excess in a spherical region of
radius R8 = 8h−1 Mpc, takes the values:

(σ8)FM =







〈

[(

δM

M8

)

0

]2
〉1/2







FM

= 0.7 ; (58a)

(σ8)KLA =







〈

[(

δM

M8

)

0

]2
〉1/2







KLA

= 0.9 ; (58b)

in view of the general definition of mass excess:

δM

M
=

ρ̄ − ρh

ρh
, (59)

the mass within the region under consideration may
be obtained using Eqs. (52), (58), and (59). The re-
sult is:

M8 = 28 109 (1 + σ8)
H2

0Ω0

h3G
, (60)

which may be specified for any flat cosmological
model with assumed values of H0, Ω0, and σ8.

B. Determination of fitting haloes to FM01
and KLA01 simulated haloes, with respect to
NFW and MOA density profiles

Given a selected FM01 simulated halo among
the runs listed in Table 3 i.e. for which the values
of the parameters, M200, r200, and δ, are known,
we aim at deriving the values of the scaling density,
ρ0, and the scaling radius, r0, related to the corre-
sponding fitting halo, and then the remaining pa-
rameters, in connection with both NFW and MOA
density profiles. The total mass of the simulated
halo, M , appears in FM01 prescriptions, expressed
by Eqs. (4) and (5), but the related values are not re-
ported therein. Then the key parameter is the scaled
radius, ξ200.

Owing to the general definition of scaled ra-
dius, Eq. (5a) may be written in the equivalent form:

ξ200 =
r200

r0
= C−1

r δ1/3 r200

kpc

(

M

M10

)−2/3

; (61)

on the other hand, the particularization of the gen-
eral expression of the mass enclosed within a generic,
isopycnic surface, to the case under discussion, via
Eqs. (2) and (3), reads:

M200 = 3M0

∫ ξ200

0

f(ξ)ξ2 dξ ; (62)

and the combination of Eqs. (61) and (62) produces a
transcendental equation in M , which can be solved in
connection with an assumed (NFW or MOA) density
profile, provided the values of the parameters, Cr, δ,
r200 and M200, are specified using the data listed in
Table 3.

The knowledge of the total mass of the sim-
ulated halo, assumed to coincide with the mass of
the fitting halo M , allows the calculation of the scal-
ing density ρ0, and the scaling radius r0, via Eqs. (4)
and (5), and then the radius along a fixed direction
R = Ξr0, the scaling mass M0, appearing in Eq. (6),
and the dimensionless parameter κ, expressed by
Eq. (8).

With a NFW density profiles, the particu-
larization of Eq. (62) to the case under discussion,
yields:

M200 = 12M0

[

ln(1 + ξ200) −
ξ200

1 + ξ200

]

, (63)

where, owing to Eqs. (6) and (19):

1

12

M200

M0
=

125

28π

M200

M
, (64)

and the combination of Eqs. (63) and (64) yields:

M200

M
=

28π

125

[

1

1 + ξ200
− ln

1

1 + ξ200
− 1

]

; (65)
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finally, the combination of Eqs. (5b), (61), and (65)
produces the ultimate transcendental equation in M .

With MOA density profiles, the particulariza-
tion of Eq. (62) to the case under discussion, yields:

M200 = 4M0 ln
(

1 + ξ
3/2
200

)

, (66)

where, owing to Eqs. (6) and (17):

1

4

M200

M0
=

375

56π

M200

M
, (67)

and the combination of Eqs. (66) and (67) yields:

M200

M
=

56π

375
ln
(

1 + ξ
3/2
200

)

; (68)

finally, the combination of Eqs. (5c), (61), and (68),
produces the ultimate transcendental equation in M .

The above procedure, via Eqs. (10)-(16), also
holds for a selected, KLA01 simulated halo among
the runs listed in Table 4, for which the values of the
parameters, Mvir, rvir, and δ, are known.

With both NFW and MOA density profiles,
some parameters related to fitting haloes, in connec-
tion with simulated haloes from FM01 and KLA01,
are listed in Tables 7 and 8, respectively.

C. Sensitivity errors of dark matter halo si-
mulations

Bearing in mind the general results listed in
Table 1, together with Eq. (8), the scaled parame-
ters M/M0, R/r0, ρ̄/ρ0, and κ, depend only on the
fitting density profile. For a selected choice of expo-
nents (α, β, γ), fitting haloes depend on two param-
eters, (r0, ρ0), or (M, δ), via Eqs. (4) and (5).

Given a computer run with N identical parti-
cles of mass m, the sensitivity error with respect to
the mass is clearly expressed as ∆M = m. It follows
that:

∆
M200

M0
=

(

1 +
M200

M0

)

M200

M0

m

M200
; (69a)

∆M0 = ∆M200 = m ; (69b)

the second parameter, δ, is proportional to the
present-day mass excess of the growing mode pre-
dicted by the top-hat model, (δM/M)0, as:

δ = Cδ

[(

δM

M

)

0

]3
M

M10
; (70a)

Cδ =
125

54
ζvirC

3
r Ξ3 H2

0Ω0

G

kpc3

M10
; (70b)

where Ω0 is the present-day matter density param-
eter (Ω0 + Λ0 = 1), and ζvir depends on the evolu-
tion of the density perturbation during the expansion
phase, and lies within the range 1 ≤ ζvir ≤ 8. For a
formal demonstration, see Appendix A.

The repetition of the above procedure yields:

∆δ = δ
3M200 + 2(δM)0

M200(δM)0
m

= δ

[

2 + 3C
1/3
δ δ−1/3

(

M200

M10

)1/3
]

m

M200
; (71a)

∆(δM)0 = ∆M200 = m ; (71b)

and the sensitivity error with respect to ρ0 and r0,
by use of Eqs. (4) and (6), is:

∆ρ0 = 3ρ0
M200 + (δM)0
M200(δM)0

m

= 3ρ0

[

1 + C
1/3
δ δ−1/3

(

M200

M10

)1/3
]

m

M200
; (72)

∆r0 =
1

3
r0

[

4 + 3C
1/3
δ δ−1/3

(

M200

M10

)1/3
]

m

M200
; (73)

finally, the further assumption ∆r200 = ∆r0 allows
the following results:

∆
r200

r0
=

1

3

(

1 +
r200

r0

)

×
[

4 + 3C
1/3
δ δ−1/3

(

M200

M10

)1/3
]

m

M200
; (74)

∆
ρ̄200

ρ0
= ∆

(

M200

M0

r3
0

r3
200

)

=
ρ̄200

ρ0

[

5 +
M200

M0
+ 3C

1/3
δ δ−1/3

(

M200

M10

)1/3
]

×
(

1 +
r0

r200

)

m

M200
; (75)

∆κ200 = κ200

(

1 +
r0

r200

)

×
[

2 +
3

2
C

1/3
δ δ−1/3

(

M200

M10

)1/3
]

m

M200
; (76)

where Eqs. (4) and (7) were used.
The sensitivity error of FM01 computer runs

in dark matter halo simulations, expressed by
Eqs. (69), (74), (75) and (76), may be calculated and
compared with their rms counterparts, to see if a
necessary condition for the detectability of acciden-
tal errors is satisfied, namely:

∆η ≤ ση ; (77)

where η = M200/M0, r200/r0, ρ̄200/ρ0, κ200. To this
aim, an inspection of Tables 3, 5, and 7, shows that
the following inequalities hold:

m

M200
< 10−6 ;

M200

M0
< 20 ; (78a)
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r200

r0
< 20 ;

r0

r200
<

1

2
; (78b)

ρ̄200

ρ0
< 1 ; κ200 < 2.8 ; (78c)

C
1/3
δ δ−1/3

(

M200

M10

)1/3

< 0.2 ; (78d)

where upper values of Cδ have been used, in con-
nection with the range 1 ≤ ζvir ≤ 8, according to
Eq. (39b). The combination of Eqs. (69), (74), (75),
(76), and (78) yields:

∆
M200

M0
< 10−3 ; ∆

r200

r0
< 10−4 ; (79a)

∆
ρ̄200

ρ0
< 10−4 ; ∆κ200 < 10−5 . (79b)

The sensitivity errors of KLA01 computer
runs in dark matter halo simulations are expressed
in the same way, provided u200 is replaced by uvir,
where u = M , r, ρ̄, κ. An inspection of Tables 4, 6,
8, shows that the following inequalities hold:

m

Mvir
< 6 10−4 ;

Mvir

M0
< 30 ; (80a)

rvir

r0
< 20 ;

r0

rvir
< 0.2 ; (80b)

ρ̄vir

ρ0
< 0.02 ; κvir < 20 ; (80c)

C
1/3
δ δ−1/3

(

Mvir

M10

)1/3

< 1.2 ; (80d)

where upper values of Cδ have been used, in con-
nection with the range 1 ≤ ζvir ≤ 8, according to
Eq. (39b). Following the procedure used for FM01,
here yields the final result:

∆
Mvir

M0
< 1 ; ∆

rvir

r0
< 4 10−2 ; (81a)

∆
ρ̄vir

ρ0
< 5 10−4 ; ∆κvir < 6 10−2 ; (81b)

The comparison between the sensitivity er-
rors, expressed by Eqs. (79) and (81), and their rms
counterparts, deduced from Table 9, shows that a
necessary condition for the detectability of acciden-
tal errors, expressed by Eq. (77), is satisfied for both
FM01 and KLA01 simulations. To this aim, it is
worth remembering that, according to the theory of
errors, ση̄ = ση/

√
N , where N = 12 in the case under

consideration.

D. rms errors of distributions depending on
scaled parameters

Let dark matter haloes be fitted by univer-
sal density profiles, expressed by Eq. (2), and let the
distribution depending on the scaled radius Ξ (or
concentration with regard to NFW density profiles)

be lognormal. The scaled mass enclosed within the
generic scaled distance ξ, and the related scaled mean
density, are:

M(ξ)

M0
= 3

∫ ξ

0

f(ξ)ξ2 dξ ; (82)

ρ̄(ξ)

ρ0
=

3

ξ

∫ ξ

0

f(ξ)ξ2 dξ ; (83)

and the generalization of the dimensionless parame-
ter, k, defined by Eq. (8), to the generic scaled radius,
ξ, reads:

k(ξ) = C3/2
r ξ3/2 ; (84)

where the constant, Cr, is determined by averaging
on the results of simulations (FM01), and for the
cases of interest it is expressed by Eqs. (5b), (5c),
and (10).

The first derivatives of the functions on the
left-hand side of Eqs. (82), (83), and (84), are:

d(M/M0)

dξ
= 3f(ξ)ξ2 ; (85)

d(ρ̄/ρ0)

dξ
=

3

ξ

[

f(ξ) − 1

ξ3

M(ξ)

M0

]

; (86)

dk

dξ
=

3

2

k(ξ)

ξ
; (87)

and, in addition:

d log ξ

dξ
=

1

ln 10

1

ξ
; (88)

following the standard rules of derivation.
Let us suppose that (i) the scaled parame-

ters, η (η = Mtrn/M0), Ξtrn, ρ̄trn/ρ0, and ktrn,
trn = 200, vir, as functions of log Ξtrn, can be ex-
pressed as Taylor series, where the starting point co-
incides with the expected value of the lognormal dis-
tribution of the concentration, Ξ = exp10(log Ξtrn)∗;
(ii) the convergence radius of the series under dis-
cussion exceeds at least three times the rms error
of the lognormal distribution σlog Ξtrn

, or, in other
words, the convergence occurs at least within the
range, log Ξ∓ 3σlog Ξtrn

; (iii) the series under discus-
sion can safely be approximated by retaining the first
order termd and neglecting all the terms of higher or-
der. It is worth remembering that the propagation
of the errors, and the related formulae currently used
in literature, are based on the above mentioned as-
sumptions.

Let φ(ξ) be a generic, derivable function of an
independent variable, ξ. The application of the theo-
rem of the derivative of a function of function, where
the second function is log ξ, yields:

dφ

d log ξ
=

dφ

dξ

dξ

d log ξ
= ln 10 ξ

dφ

dξ
; (89)
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and the particularizations to the scaled parameters
considered here, read:

d(M/M0)

d log ξ
= 3 ln 10 f(ξ)ξ3 ; (90)

d(ρ̄/ρ0)

d log ξ
= 3 ln 10

[

f(ξ) − 1

ξ3

M(ξ)

M0

]

; (91)

dk

d log ξ
=

3

2
ln 10 k(ξ) ; (92)

in view of Eqs. (85), (86), and (87).
On the other hand, the validity of the above

assumptions implies that the relations:

η(log Ξtrn) = η(log Ξ) +

(

dη

d log Ξtrn

)

log Ξ

× (log Ξtrn − log Ξ) ; (93a)

η =
M

M0
, Ξ,

ρ̄

ρ0
, k ; trn = 200, vir ; (93b)

hold to a good extent. The combination of Eqs. (88),
(90), (91), (92), and (93), yields:

M(log Ξtrn)

M0
=

M

M0
+ 3 ln 10f(Ξ)Ξ3

× (log Ξtrn − log Ξ) ; (94)

Ξtrn(log Ξtrn) = Ξ + ln 10Ξ(log Ξtrn − log Ξ) ; (95)

ρ̄(log(Ξtrn)

ρ0
=

ρ̄

ρ0
+ 3 ln 10

[

f(Ξ) − 1

Ξ3

M

M0

]

× (log Ξtrn − log Ξ) ; (96)

k(log Ξtrn) = k +
3

2
ln 10(logΞtrn − log Ξ) ; (97)

where for sake of brevity, M = M(Ξ), ρ̄ = ρ̄(Ξ), and
k = k(Ξ).

The scaled parameter, log Ξtrn, may be re-
garded as the physical quantity to be measured di-
rectly. Accordingly, the distribution depending on
log Ξtrn has necessarily to be normal. A theorem re-
lated to the theory of errors ensures that the scaled
parameters, η, defined by Eqs. (93), also follow nor-
mal distributions, whose expected values and rms er-
rors, via Eqs. (94), (95), (96), and (97), are expressed
as:

η∗ =
M

M0
, Ξ,

ρ̄

ρ0
, k ; (98)

ση =

∣

∣

∣

∣

∣

(

dη

d log Ξtrn

)

log Ξ

∣

∣

∣

∣

∣

σlog Ξ ; (99)

and the last relation, owing to Eqs. (88), (90), (91),
and (92), takes the explicit form:

σM/M0
= 3 ln 10 Ξ3f(Ξ) σlog Ξ ; (100)

σΞ = ln 10 Ξ σlog Ξ ; (101)

σρ̄/ρ0
= 3 ln 10

∣

∣

∣

∣

f(Ξ) − 1

Ξ3

M

M0

∣

∣

∣

∣

σlog Ξ ; (102)

σk =
3

2
ln 10 k σlog Ξ ; (103)

for the scaled parameters under consideration.
Starting from Eq. (99), after replacing η with

log η, and using Eq. (88), after replacing ξ with η,
yields an expression of the rms errors of lognormal
distributions, in terms of their counterparts related
to normal distributions. The result is:

σlog η =
1

ln 10

1

η

∣

∣

∣

∣

∣

(

dη

d log Ξtrn

)

log Ξ

∣

∣

∣

∣

∣

σlog Ξ ; (104)

or, after comparison with Eq. (99):

σlog η =
1

ln 10

1

η
ση ; (105)

which, owing to Eqs. (100), (101), (102), and (103),
take the explicit form:

σlog(M/M0) = 3Ξ3f(Ξ)

(

M

M0

)−1

σlog Ξ ; (106)

σlog Ξ = σlog Ξ ; (107)

σlog(ρ̄/ρ0) = 3

∣

∣

∣

∣

f(Ξ) − 1

Ξ3

M

M0

∣

∣

∣

∣

(

ρ̄

ρ0

)−1

σlog Ξ ;(108)

σlog k =
3

2
σlog Ξ ; (109)

where the identity (107) is written out for sake of
completeness.

E. Random model: the concentration distri-
bution as a result of the central limit theorem

Dark matter halo and star formation take
place in a similar fashion, namely a transition from
an undifferentiated fluid to substructures. Although
a molecular cloud is neither expanding nor subjected
to the Copernican principle, contrary to the Hub-
ble flow, the above processes are expected to exhibit
some common features.

The initial mass function in a star genera-
tion may safely be fitted by a lognormal distribu-
tion (e.g. Adams and Fatuzzo 1996, Padoan et al.
1997), which, in turn, can be interpreted in terms of
the central limit theorem (Adams and Fatuzzo 1996).
On the other hand, data from a statistical sample of
about five thousands of simulated dark matter haloes
(Bullock et al. 2001), show - to a good extent - a log-
normal distribution of the concentration within mass
bins of (0.5-1.0)×10nh−1M�, where n is an integer,
11 ≤ n ≤ 14.

Here we adopt a statistical approach to the
calculation of the lognormal distribution of the con-
centration, following the procedure used by Adams
and Fatuzzo (1996) in dealing with the initial mass
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function of a star generation. To this aim, let us first
suppose that a transformation exists between initial
conditions and the final properties of the dark matter
halo with assigned mass.

Given a cosmological model and a perturba-
tion spectrum, the initial conditions of a simula-
tion are defined by a generation of complex num-
bers with a phases randomly distributed in the range
0 ≤ φ < 2π and with amplitudes normally dis-
tributed, where the variance is provided by the se-
lected spectrum, in the simplest case of a Gaussian
distributed random field. For further details see e.g.
Moscardini (1993), Tormen et al. (1997).

Given a universal density profile, assumed to
fit to dark matter haloes under consideration, the fi-
nal properties are related to the scaled radius, or the
concentration with regard to NFW density profiles,
via the results listed in Table 1.

Second, let us suppose that the transformation
under consideration is expressible as a product:

Ξtrn = A

n
∏

j=1

β
γj

j =

n
∏

j=1

αj ; (110)

where the constant, A, and the exponents, γj , are
fixed, and the variables, βj or αj , are conceived as
random variables. Though Eq. (110) cannot be mo-
tivated by the existence of some semiempirical rela-
tion, as in the case of star formation (Adams and
Fatuzzo 1996), neverthless it cannot be excluded un-
less further knowledge about the genesis of dark mat-
ter haloes is available.

The central limit theorem holds provided the
random variables, αj , appearing in Eq. (110), are
completely independent, and their number, n, tends
to infinite. For the more realistic case of a finite num-
ber of not completely independent random variables,
the resulting distribution is expected to be different
from a (log)normal distribution.

Taking the decimal logarithm on both sides of
Eq. (110) yields:

log Ξtrn =

n
∑

j=1

log αj ; (111)

and the expected value of the distribution,
fj(log αj) d log αj , depending on the random vari-
able, log αj , is:

(log αj)
∗ =

∫ +∞

−∞
log αjfj(log αj) d log αj ;

1 ≤ j ≤ n ; (112)

accordingly, the error, xlog αj , is:

xlog αj = log αj − (log αj)
∗ = log

αj

α∗
j

; (113a)

α∗
j = exp10(log αj)

∗ ; 1 ≤ j ≤ n ; (113b)

where, of course, α∗
j is different from the expected

value of the distribution, fj(αj) dαj , depending on
the random variable, αj .

The variance of the distribution,
fj(xlog αj ) dxlog αj , is:

σ2
log αj

=

∫ +∞

−∞
x2

log αj
fj(xlog αj ) dxlog αj ;

1 ≤ j ≤ n ; (114)

and the related expected value equals zero.
Let us define the random variable:

ζ =
n
∑

j=1

xlog αj =
n
∑

j=1

log
αj

α∗
j

=
n
∑

j=1

log αj−
n
∑

j=1

log α∗
j ;

(115)
and combine Eqs. (111) and (115), to obtain:

log Ξtrn = ζ +

n
∑

j=1

log α∗
j ; (116)

which is equivalent to:

Ξtrn = Ξ∗ exp10(ζ) ; (117a)

Ξ∗ =
n
∏

j=1

α∗
j ; (117b)

where, of course, Ξ∗ is different from the expected
value of the distribution, f(Ξtrn) dΞtrn, depending
on the random variable Ξtrn.

The application of the central limit theorem
to the distribution f(ζ) dζ, depending on the random
variable ζ, yields (e.g. Adams and Fatuzzo 1996):

σ2
ζ =

n
∑

j=1

σ2
log αj

; (118)

and aiming to find a distribution, f(ζ̃) dζ̃ , charac-
terized by unit variance, σ2

ζ̃
= 1, and null expected

value, ζ̃∗ = 0, let us define the random variable:

ζ̃ =
ζ

σ2
ζ

; (119)

where, owing to the central limit theorem, the dis-
tribution is normal:

f(ζ̃) dζ̃ =
1√
2π

exp

(

− ζ̃2

2

)

dζ̃ ; (120)

independent of the initial distributions,
fj(xlog αj ) dxlog αj .

Taking the decimal logarithm of both sides of
Eq. (117a), and using Eq. (119), one obtains:

log Ξtrn = log Ξ∗ + ζ = log Ξ∗ + σ2
ζ ζ̃ ; (121)
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and the distribution, f(Ξtrn) dΞtrn, depending on the
random variable, Ξtrn, is lognormal. The pertaining
expected value and variance are:

(log Ξtrn)∗ = log Ξ∗ ; (122)

σ2
log Ξtrn

= σ2
ζ ; (123)

accordingly, the distribution reads:

f(log Ξtrn) d log Ξtrn =
1√

2πσζ

× exp

[

− (log Ξtrn − log Ξ∗)2

2σ2
ζ

]

d log Ξtrn ; (124)

and the decimal logarithm of the probability density,
f(log Ξtrn), may be written as:

log[f(log Ξtrn)] = −1

2
log(2π) − log σζ

− 1

ln 10

1

2σ2
ζ

(

log
Ξtrn

Ξ∗

)2

; (125)

where the first term on the right-hand side may be
regarded as a normalization constant.

The values of the expected value and the vari-
ance, expressed by Eqs. (122) and (123), related to
the lognormal distribution, defined by Eq. (124), may
be deduced from the results of simulations (e.g. Bul-
lock et al. 2001). For further details on the proce-
dure outlined above, see Adams and Fatuzzo (1996).

By analogy with the theory of measure, a com-
puter run may be considered as an execution of mea-
sure operations, the related computer code as a mea-
sure instrument, the dark halo as a measure subject,
and the sequences of random numbers used in the
definition of initial conditions as contributors to the
accidental error. Then the computer output may be
thought about as a measure of the corresponding
scaled parameter, which may be conceived as fluc-
tuating around its fitting counterpart.

In addition, it is worth noting that the ap-
plication of least-squares or least-distances methods
in fitting simulated with universal density profiles
(e.g. Dubinski and Carlberg 1991, KLA01, FM03)
implies a (fiducial) normal distribution of the simu-
lated density (in decimal logarithm) around the ex-
pected value deduced from the fitting density pro-
file, at any fixed distance (in decimal logarithm). It
is the particularization, to the case of interest here,
of a well known result of the theory of errors (e.g.
Taylor 2000, Chap. 8, § 8.2).
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HALOI TAMNE MATERIJE: DODATNI KRITERIJUM

ZA IZBOR FITA PROFILA GUSTINE

R. Caimmi and C. Marmo

Dipartimento di Astronomia, Universita’ di Padova
Vicolo Osservatorio 2, I-35122 Padova, Italy

UDK 524.88
Originalni nauqni rad

U ovom radu fitujemo simulirane haloe
tamne materije univerzalnim, samosliqnim
profilima gustine, gde svi skalirani
parametri zavise samo od skaliranog
(graniqnog) radijusa Ξ = R/r0, za koji pret-
postavǉamo da je nezavisan od mase i epohe
formiraǌa. Daǉa pretpostavka log-normalne
raspodele (za izabrani interval masa) skali-
ranog radijus, ili koncentracije, u skladu
sa podacima iz velikog statistiqkog uzorka
simuliranih galaktiqkih haloa (Bulok sa
saradnicima 2001), dozvoǉava (bar u pr-
voj aproksimaciji) korix�eǌe normalne ili
log-normalne raspodele za ostale skalirane
parametre, preko iste procedure koja se ko-
risti za propagaciju grexaka. Predla�emo
novi kriterijum za izbor najboǉeg fita pro-
fila gustine, na osnovu skupa simulacija vi-
soke rezolucije, na kome su izvrxene odre�ene
procedure usredǌavaǌa. Radi dostizaǌa tog
ciǉa, tra�imo minimalnu vrednost odnosa
|xη̄ |/σsη̄ = |η̄ − η∗|/σsη̄, gde je η̄ aritmetiqka
sredina celog skupa; η∗ je analogna veliqina
za fit profila gustine; σsη̄ je standardna de-
vijacija sredǌe vrednosti; i η je izabrani
skalirani (tj. bezdimenzionalni) parame-
tar. Gorǌi kriterijum se primeǌuje na par
skupova od kojih je svaki saqiǌen od desetak

simulacija visoke rezolucije, FM01 (Fukuxi-
ge i Makino 2001) i KLA01 (Klajpin sa sarad-
nicima 2001), u vezi sa dva profila gustine
danas qesto korix�ena za fitovaǌe, Navaro-
Frenk-Vajtov (NFW; npr. Navaro sa sarad-
nicima 1997) i MOA profilom (npr. Mur sa
saradnicima 1999). Pri tome se zavisnost
skaliranog radijusa od mase i epohe (crvenog
pomaka) formiraǌa u prvom pribli�eǌu zane-
maruje. Za uzorke FM01 i KLA01, ispostavǉa
se da su najboǉi fitovi MOA i NFW, respek-
tivno. Osim toga, gorǌi rezultati va�e i pri
razmatraǌu rms-grexaka izvedenih standard-
nim propagacijom grexaka za date raspodele
skaliranih parametara. Tako�e proceǌujemo
grexku osetǉivosti simulacija i pokazujemo
da je ona maǌa od standardne devijacije, xto
je neophodan uslov za detektabilnost sluqa-
jnih grexaka. Razmatramo i neke osobine rane
evolucije haloa tamne materije predstavǉe-
nih profilima gustine u granicama sfernog
”top-hat” modela. Iako srodne raspodele
materije ne predstavǉaju dobro simulirane
haloe, sem ako (usredǌena) vrednost maksi-
muma nije rastu�a funkcija mase, pokazujemo
da su rezultati konzistentni pod uslovom da
haloi stiqu znaqajan ugaoni moment tokom
faze xireǌa.
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