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SUMMARY: We tackle the two-body problem associated to Hénon-Heiles’ po-
tential in the special case of the collision singularity. Using McGehee-type trans-
formations of the second kind, we blow up the singularity and replace it by the
collision manifold Mc pasted on the phase spece. We fully describe the flow on Mc.
This flow is similar to analogous flows met in post-Newtonian two-body problems.
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1. INTRODUCTION

Hénon and Heiles’ (1964) potential was intro-
duced in order to model the motion of a star within
a galaxy. This potential has the form

U(x, y) = Ax2 + By2 + Cx2y + Dy3, (1)

with A, B, C, D ∈ R, A, B > 0. Originally it was
examined for the case of axial symmetry, whereas in
this paper one applies it to the case of the planar
motion of a test particle (star) in the plane z = 0.
For this reason, as will see further on, the angular-
momentum integral does not exist.

Hénon-Heiles’ potential was constructed by
adding two terms of third degree in coordinates to
the potential of a planar harmonic oscillator. It also
results from expansion of the potential corresponding
to an integrable system (resulting from some canon-
ical transformations applied to a system modelling
the motion of three particles on a circle under the
influence of exponentially decreasing forces) to third-
degree terms (see Boccaletti and Pucacco 1996, Ani-
siu and Pál 1999).

In this paper we tackle the collision dynam-

ics in the two-body problem associated to Hénon-
Heiles’ model. In Section 2 we establish equations of
the motion in configuration-momentum coordinates,
as well as the existence of the first integral of en-
ergy. We also show that the angular momentum is
not conserved.

In Section 3 we transform the equations of mo-
tion and the energy integral into standard polar coor-
dinates. The equations of motion represent singular-
ities corresponding to both collision and escape. We
deal here only with collision singularities, and blow
them up via a Sundman-type transformation of the
time. In fact, both the change from configuration-
momentum coordinates to standard polar coordi-
nates and the time rescaling constitute steps of the
McGehee-type second-kind transformations (McGe-
hee 1974), which provide regularized equations of
motion (Section 4).

Under the McGehee-type transformations, the
collision singularity was blown up and replaced by a
manifold Mc pasted on the phase space. Section 5
describes this manifold (which is a 2D cylinder or a
2D torus) and the flow on it. Even if this flow is de-
prived of physical significance, it provides valuable
information about the orbits that approach collision
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(due to the continuity of solutions with respect to
initial conditions).

In spite of the fact that Hénon-Heiles’ model
is anisotropic, the collision manifold is fairly simple:
a torus with an upper circle (UC) and a lower cir-
cle (LC) of degenerate equilibria, and heteroclinic
orbits that move from LC to UC (for comparison
with other anisotropic fields, see Gutzwiller 1973,
Devaney 1978, Craig et al. 1999, Mioc et al. 2003).

2. BASIC EQUATIONS

Let us consider the motion of a particle of unit
mass with respect to the field-generating source. Let
q = (q1, q2) ∈ R2 be the position (configuration)
vector of the particle. The potential (1) will read

U(q) = Aq2
1 + Bq2

2 + Cq2
1q2 + Dq3

2 . (2)

Denote by T (p) = |p|2/2 the kinetic energy
of the particle, where p(= q̇) = (p1, p2) ∈ R2 is the
momentum vector. The equations of motion read

q̇ = ∂H(q,p)/∂p,
ṗ = −∂H(q,p)/∂q,

(3)

in which the Hamiltonian has the expression
H(q,p) = T (p) − U(q), or, explicitly,

H(q,p) = (p2
1+p2

2)/2−Aq2
1−Bq2

2−Cq2
1q2−Dq3

2. (4)

By (3) and (4), we get the equations of motion
in the form

q̇1 = p1,
q̇2 = p2,
ṗ1 = 2Aq1 + 2Cq1q2,
ṗ2 = Cq2

1 + 2Bq2 + 3Dq2
2 .

(5)

It is clear that the Hamiltonian is a constant
of motion, namely

H(q,p) = h, (6)

which provides the first integral of energy: along each
orbit the total energy of the system is conserved. In
(6) h is the energy constant.

Defining the angular momentum L(q,p) =
q1p2−q2p1, it is also clear that L̇ ≡ 0 only for A = B
and C = 0 = D. In other words, the angular mo-
mentum is not conserved, so we do not have a cor-
responding first integral. This was to be expected,
given the anisotropic structure of Hénon-Heiles’ po-
tential.

3. POLAR COORDINATES

Since our problem is anisotropic, it is more
convenient to tackle it in polar coordinates (r, θ).
Let us define the real analytic diffeomorphism R4 →
R × S1 × R2, (q1, q2, p1, p2) �→ (r, θ, u, v) via the
transformations

r = |q|, θ = arctan(q2/q1),
u = ṙ = (q1p1 + q2p2)/|q|,
v = rθ̇ = (q1p2 − q2p1)/|q|.

(7)

Under these transformations (which also rep-
resent the first step of McGehee (1974)-type transfor-
mations of the second kind), the equations of motion
(5) become

ṙ = u, θ̇ = v/r
u̇ = v2/r + (2A + 3Cr sin θ)r cos2 θ+
+(2B + 3Dr sin θ)r sin2 θ,
v̇ = −uv/r + 2(B − A)r sin θ cos θ+
+[3(D − C) sin2 θ + C]r2 cos θ.

(8)

whereas the energy integral (6) acquires the form

(u2 + v2)/2 − (A cos2 θ + B sin2 θ)r2−
−(C cos2 θ + D sin2 theta)r3 sin θ = h.

(9)

Note that, in (7), u and v are the standard
polar components of the velocity.

4. REGULAR EQUATIONS OF MOTION

Examining the equations of motion (8), we see
that they are singular for r → 0. This situation
corresponds to a collision of the particle with the
field-generating source. To prove it, an imitation of
Painlevé’s criterion is sufficient.

Consider hence the collision r = 0. It is in-
teresting that the collision is not a singularity in
configuration-momentum coordinates (q,p), but is
a singularity in polar coordinates. Also, the energy
integral is regular in both configuration-momentum
and polar coordinates. (However, there are restric-
tions for the energy integral in this case, but they
will be discussed later.)

To remove the singularity in Eqs. (8), we re-
sort to a Sundman-type transformation

ds = r−1dt, (10)

which rescales the time. (Such a change of variable
constitutes the last step of McGehee transformations
of the second kind.) Introducing (10), the motion
equations become

r′ = ru, θ′ = v,
u′ = v2 + (2A + 3Cr sin θ)r2 cos2 θ+
+(2B + 3Dr sin θ)r2 sin2 θ,
v′ = −uv + 2(B − A)r2 sin θ cos θ+
+[3(D − C) sin2 θ + C]r3 cos θ,

(11)
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where (·)′ = d(·)/ds, and we kept, by abuse, the
same notation for the new functions of the timelike
variable s. Of course, the energy integral (9) remains
the same.

5. COLLISION MANIFOLD

The equations of motion (11) are well-defined
for the boundary r = 0. They extend smoothly to
this boundary, which is invariant to the flow, be-
cause, from the first Eq. (11), r′ = 0 for r = 0.

In this way, we have blown up the singularity
r = 0 and replaced it by a manifold pasted on the
phase space. In what follows we shall describe this
manifold.

Let us first define the (r = 0)-manifold:

M0 = {(r, θ, u, v)| r = 0, θ ∈ S1, (u, v) ∈ R2},
(12)

and the constant-energy manifold:

Mh = {(r, θ, u, v)| r ∈ [0,∞), θ ∈ S1, (9) holds}.
(13)

Now, we define the collision manifold Mc as

Mc = M0 ∩ Mh =
= {(r, θ, u, v)| r = 0, θ ∈ S1, u2 + v2 = 2h}.

(14)
It is clear that Mc represents a 2D cylinder

of radius
√

2h. But, since S1 is the segment [0, 2π]
with the ends pasted together, the cylinder may be
assimilated to a 2D torus. Both the cylinder and the
torus are embedded in the 3D space of the coordi-
nates (θ, u, v), embedded, in turn, in the 4D space of
the McGehee coordinates (r, θ, u, v).

A very important issue is to be emphasized
here. By (14), for h > 0, Mc is a nondegenerate
cylinder or torus; for h = 0, Mc reduces to a seg-
ment of length 2π, or to a circle; for h < 0, Mc is an
empty set. In physical terms, this means that col-
lisions are possible only for h ≥ 0. For h > 0, the
particle collides with the field-source with positive
velocity. For h = 0, the particle collides with the
field-source with zero velocity. For h < 0, there are
no collisions.

By (10), another important issue is to be re-
marked. The particle needs an infinite amount of
fictitious time s to reach the collision with the field
source. This means that Mc is a manifold of equilib-
ria for the global flow on the full phase-space of the
coordinates (r, θ, u, v). In turn, this means that the
collision velocities derived above (positive for h > 0
, zero for h = 0) are asymptotic velocities within the
timescale defined by (10).

Now, the collision manifold being geometri-
cally represented, let us depict the flow on it for
h > 0. This flow is deprived of physical significance,
but – due to the continuity of solutions with respect
to initial conditions – it provides valuable informa-
tion about orbits that approach collision.

Putting r = 0 in (11), we get the vector field

on Mc:
θ′ = v,
u′ = v2,
v′ = −uv.

(15)

One immediately sees, by the second Eq. (15),
that the flow on Mc is gradientlike with respect to
the u-coordinate (in other words, except equilibria,
every solution increases monotonically on this coor-
dinate).

The vector field (15) shows that the flow on
the torus Mc has two circles of degenerate equilibria:
the upper circle

UC = {(θ, u, v)| θ = θ0, u =
√

2h, v = 0}, (16)

and the lower circle

LC = {(θ, u, v)| θ = θ0, u = −
√

2h, v = 0}, (17)

with arbitrary θ0 ∈ S1.
Given the gradientlikeness of the flow on Mc,

all other orbits are heteroclinic and move from LC
to UC. To determine the slope of these curves, let
us put u =

√
2h sinα and v = −√

2h cosα. This
yields straightforwardly dα/dθ = −1. The flow on
Mc (considered as a cylinder) is plotted in Fig. 1.

Fig. 1. The collision manifold as a cylinder and
the flow on it.

Taking into account the first Eq. (11), the
halfplane u < 0 corresponds to orbits that approach
collision (r → 0 in the future), while the halfplane
u > 0 corresponds to ejection orbits (r → 0 in the
past). Considering the flow on Mc (Fig. 1), this
means that collision solutions are regularizable.

6. CONCLUDING REMARKS

We would like to emphasize that the ficti-
tious flow on the collision manifold in Hénon-Heiles’
two-body problem is similar to such flows met in
problems associated to quasihomogeneous potentials
(Mioc and Stavinschi 2001). Moreover, it is iden-
tical to the fictitious flows on the infinity manifold
(r → ∞) in two-body problems associated with the
certain post-Newtonian fields (relativistic or not), as,
for instance, Fock’s (Mioc and Stavinschi 2000) or
Mücket-Treder’s (Mioc 2002) ones.

In addition, let us remark that, even associ-
ated to an anisotropic field, Hénon-Heiles’ two-body
problem exhibits a fairly simple collision manifold
(cf. Gutzwiller 1973, Devaney 1978, Craig et al.
1999, Mioc et al. 2003). As we shall show elsewhere,
the corresponding infinity manifold has a much more
intricate structure.
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KOLIZIONA DINAMIKA U ENON-HEJLESOVOM PROBLEMU DVA TELA
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UDK 521.1
Originalni nauqni rad

Autori prouqavaju problem dva tela
za Enon-Hejlesov potencijal u specijalnom
sluqaju kolizione singularnosti. Koriste-
�i transformacije MekGijevog tipa druge
vrste, singularnost se odstraǌuje i zameǌuje

kolizionim mnoxtvom Mc za fazni prostor. U
potpunosti je opisan dotok na Mc. Ovaj dotok
je sliqan analognim dotocima koji se sre�u u
post-ǋutnovskim problemima dvaju tela.
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