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SUMMARY: Forth-and-back implicit Λ-iteration has been developed to solve
radiative transfer (RT) problems with plane-parallel geometry in which there is a
coupling of all RT equations by the scattering term included in the source function
(Atanacković-Vukmanović, Crivellari and Simonneau 1997). Owing to the implicit
representation of the source function in the computation of the mean intensities
within a forth-and-back sequential treatment of the two intensities propagating in
opposite directions, implicit Λ-iteration (ILI) appears to be a very efficient method
in the solution of linear as well as non-linear transfer problems. In this paper ILI
method is generalized and applied to radiative transfer problems with spherical
symmetry. The results for the monochromatic radiative transfer in a spherical
atmosphere are presented and compared to those of other authors obtained by the
other methods.
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1. INTRODUCTION

Radiative transfer (RT) is a physical phe-
nomenon essential to many astrophysical problems
and is one of the most difficult to deal with. The
main difficulty with the radiative transfer problems
comes from the non-local and, in general, non-linear
coupling of the radiation field and the state of the
gas. The specific intensity of the radiation field at
each point of a medium depends, via radiative trans-
fer process, on the state of the gas over a wide range
of distant points, whereas the state of the gas de-
pends, through the interactions with the radiation
field, upon the radiation field intensity itself. Math-
ematically, this coupling is accounted for by the si-
multaneous solution of the corresponding equations,
one describing the dependence of the mean intensity
on the source function J = Λ[S] through RT pro-
cess (by means of the so-called Λ-operator), and the
other defining the source function in terms of the

mean intensity of the radiation field S = S(J). If
the coupling is linear, i.e. if the latter dependence
has an explicit form, RT problem can be solved by
using either direct or iterative methods. However, in
more general non-linear cases, some kind of iterative
procedure is required.

The most straightforward iterative procedure,
the so–called Λ iteration, solves the two coupled
equations in turn. The solution of the problem can
be represented by the following sequence: So(τ) →
I(τ, µ) → J(τ) → Sn(τ). With the given source
function So(τ) (a trial solution to start the proce-
dure or the one obtained from the previous iteration
step), the solution of the RT equation yields specific
intensities of the radiation field I(τ, µ) and, hence,
the mean intensity J(τ) which is used to update the
value of the source function Sn(τ). However, in most
cases of interest the rate of convergence of this simple
procedure is extremely slow.
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The first method developed to solve the prob-
lem in a fully self-consistent manner was that of com-
plete linearization introduced by Auer and Mihalas
(1969). It was widely used during 1970s. Although,
from the conceptual point of view this method is en-
tirely different from the Λ iteration, the two methods
are akin in the sense that both use exact (full) RT
operator. The method of complete linearization nec-
essarily implies the storage and inversion of matrices
whose dimensions (being equal to the number of dis-
crete ordinates required for a good description of the
radiation field) are extremely high. Therefore, being
very time and memory consuming, it was in prac-
tice restricted to simplified atomic models and ge-
ometries. Moreover, due to the cumbersome matrix
structure it may suffer from numerical instabilities.

Due to their simplicity and a smaller error be-
cause of a smaller number of numerical operations,
iterative methods became again more widespread. A
class of the so-called accelerated Lambda iteration
(ALI) methods is developed, based on the idea of
Cannon’s (1973a,b) operator perturbation technique.
An approximate (Λ∗) operator is introduced instead
of the full (Λ) one, whereas a small error made by
this approximation is computed either iteratively or
by the use of perturbation procedure. In other words,
some approximation is used to simplify the detailed
description of the RT process at the cost of having
to iterate a few times in order to get an accurate
solution.

Another revision of the classical Λ iteration
aimed at speeding up its convergence, is based upon
the use of certain quasi-invariant functions, the so-
called iteration factors, whose iterative computation
leads very quickly to the exact solution. In order to
be good quasi-invariants, i.e. to change very little
from one iteration to another, the factors have to
be defined as the ratios of two homologous physical
quantities. Such an idea appeared for the first time
in the paper by Feautrier (1964). Its first realiza-
tion was the variable (depth-dependent) Eddington
factor (VEF) technique, developed in the papers by
Auer and Mihalas (1970) and by Hummer and Ry-
bicki (1971) for the solution of the monochromatic
transfer problem in plane-parallel and spherical ge-
ometry, respectively. Defined as the ratio of the in-
tensities angular moments, VEF is nearly indepen-
dent on the trial source function getting quickly the
correct value and thus providing a rapid convergence
towards the exact solution.

A different approach to the solution of RT
problems is introduced by the implicit integral
method (IIM), developed by Simonneau and Criv-
ellari (1993). Using an implicit treatment of the
radiation field within a forward-elimination back-
substitution scheme it solves global RT problem layer
by layer with no need for storing and inverting ma-
trices. It proved to be an efficient method in the
solution of various RT problems, in the first place
because its algorithm follows the physics of the RT
process. Being at first developed for plane-parallel
geometry, IIM is generalized to spherical geometry
by Gros et al. (1997).

A new simple method which substantially ac-
celerates the convergence of the ordinary Λ-iteration,
while retaining its straightforwardness, is a forth-
and-back implicit Λ iteration described in Atanack-
ović-Vukmanović, Crivellari and Simonneau (1997),
hereafter referred to as ACS. It uses an implicit rep-
resentation of the source function in the computation
of the mean intensities of the radiation field within
a forth-and-back approach. A separate treatment of
the propagation of the in-going and the out-going
intensities of the radiation field (suggested by two
separate sets of boundary conditions) enables to ex-
press intensity at any given point in any direction
as a linear function of the unknown values of the
source function and its derivative at that point and
at the previous ones along the same direction. Iter-
ative corrections of the coefficients of these implicit
relations (implicit, as the source function is a priori
unknown) instead of the unknown functions them-
selves, greatly accelerates the convergence of the di-
rect iterative scheme.

In the ACS paper, the implicit Λ iteration
(ILI) method is developed to solve non-LTE radiative
transfer problems in stationary plane-parallel media.
The aim of the present paper is to generalize the
ILI method to spherical geometry. Although radia-
tive transfer in plane parallel and spherically sym-
metric systems is the same from the physical point
of view, the principal mathematical difficulty arises
from the strong angular dependence of the radiation
field produced by the curvature. At large radial dis-
tances, the intensity is concentrated within a narrow
cone around the outward radial direction (”peaking
effect”). The number of specific RT equations nec-
essary to describe the strong anisotropy of the radi-
ation field is exceedingly high, making the solution
of the RT problems with spherical symmetry more
complicated than that in plane–parallel geometry.

For the sake of an easier presentation of the
ILI method when applied to spherical geometry we
shall limit ourselves to the case of a monochromatic
scattering in a spherical atmosphere. This simple
case has been treated by several authors and serves
as a good benchmark for testing the quality of the
results.

2. RADIATIVE TRANSFER
IN SPHERICAL MEDIA

We shall consider a stationary stellar atmo-
sphere consisting of homogeneous spherical layers
(whose physical properties vary only with radial dis-
tance r). For the numerical description of the radia-
tion transport through such an atmosphere a discrete
set of radii {r(L)}, L = 1, N is required. Let the up-
per boundary surface of the atmosphere be at radius
r(1) and the lower one at radius r(N) (see Fig. 1).
The radius r(N) is to be chosen so that the radiation
field at that point be highly isotropic. It is custom-
ary to take r(1) as the origin of the mean optical
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Fig. 1. Discrete mesh of radii {r(L)}, L = 1, N and a grid of rays (directions) K = 1, NT that are used
for the solution of the RT equation; I±L (K) denote the in–going and out–going intensities along the direction
K at any point L.

depth scale along the radial direction τ , defined by

τ(r) =
∫ r(1)

r

χ(r′)dr′, (1)

where the opacity χ(r) is assumed to be known.
Hence, with the known opacity χ(r) we can com-
pute the set of radial optical depths τ(L) = τ [r(L)]
so that τ(1) = 0 and that τ(L) increases with depth.

In order to evaluate the radiation field in
spherical media, one can use the radiative transfer
(RT) equation either in partial differential or in ordi-
nary differential form. RT equation written in polar
coordinates reads:

µ
∂I(r, µ)

∂r
+

1 − µ2

r

∂I(r, µ)
∂µ

= −χ(r)[I(r, µ)−S(r)],

(2)
where µ is the cosine of the angle between the out-
ward radius vector and the direction of propagation
of radiation at radius r, I(r, µ) is the specific inten-
sity of the radiation field at point r and in the direc-
tion µ, χ(r) being the volume opacity coefficient and
S(r) the source function.

If we consider radiative transfer along a
straight ray, RT equation has an ordinary differential
equation form:

±dI±

dτ
= I± − S, (3)

where τ is the optical depth along the ray due to the
volume opacity coefficient χ (see eq. (6)), whereas

I± is the specific intensity in the two directions along
the ray.

Here we shall use the ordinary differential
equation form and the discrete set of rays like the
one used by Gros et al. (1997). The solution of RT
equation (the computation of the intensities) is per-
formed ray-by-ray along the set of directions tangent
to the spherical layers corresponding to the discrete
set {r(L)} as well as along a few additional so-called
core rays that intersect the inner boundary surface
(see Fig. 1). The latter set of rays is added for better
description of the inner boundary condition. These
rays have impact parameters, i.e. closest approach to
the center, r(L); L = N + 1, NT where r(NT ) = 0.

The intensities propagated along a ray K are
computed in the points where the ray intersects the
spherical shells of radii r(L), with L < K. In these
points the ray forms angles θL

K with the local out-
ward radial directions whose cosines µL

K are given
by

µL
K =

√
1 − r(K)2

r(L)2
. (4)

According to customary terminology and no-
tation, the intensity at point L propagating in the
direction of increasing optical depth along a ray K
(in-going intensity) is denoted as I−L (K), whereas
that propagating in the direction of decreasing op-
tical depth (out-going intensity) as I+

L (K).

29



O. ATANACKOVIĆ-VUKMANOVIĆ

For the computation of the in-going intensi-
ties I−L (K) we need the values of the incident inten-
sities on the upper boundary surface I−1 (K), K =
1, NT (usually zero). For the outgoing intensities
I+
L (K) propagating along the rays with impact pa-

rameters r(L); L = 1, N , the initial conditions are
I+
L (L) = I−L (L), as the radiation field is symmetric

about the point K = L at which µL
K = µL

L = 0.
For the rays that intersect the core, the intensities
I+
N (K), K = N +1, NT incident on the inner bound-

ary surface must be given.
Thus, given the intensity IL(K) at point L

propagating along a ray K the intensity IL+1(K) at
point L + 1 on the same ray K can be expressed us-
ing the integral form of the radiative transfer equa-
tion:

IL+1(K) = IL(K)e−∆τL,L+1(K) +

+
∫ τL+1(K)

τL(K)
S[τ(K)]e−[τL+1(K)−τ(K)]dτ(K) . (5)

Here, dτ(K) is the differential optical distance along
the ray K given by:

dτ(K) = χ[z(K)]dz(K), (6)

where z is the geometrical distance along the ray. It
can also be expressed in terms of differential radial
optical depth dτ as follows:

dτ(K) =
dτ

µ
. (7)

From Eq. (5) we see that for the compu-
tation of the specific intensities, apart from the
given boundary conditions, we need the values of the
source function {SL} over the given mesh of depth
points. However, the source function is not a priori
known, as in general it contains the scattering inte-
gral. In the case of monochromatic scattering that
we shall consider in this paper, this is the integral of
the specific intensity of the radiation field over direc-
tions JL given by:

JL =
1
2

∫ 1

−1

IL(µ)dµ. (8)

In this case the source function is expressed as a lin-
ear function of the mean intensity of the radiation
field JL:

SL = εBL + (1 − ε)JL, (9)
where ε is the branching ratio between the ther-
mal contribution BL and the scattering integral JL.
Hence, all the specific intensities, i.e. all the spe-
cific RT Eq. (3), are coupled by the scattering term
(8), that is, in practice, replaced by a finite sum of
specific intensity values:

JL =
1
2
ΣNT

K=LWL(K)[I+
L (K) + I−L (K)]. (10)

Here, WL(K) are the quadrature weights, that can
be determined once we choose a functional represen-
tation for IL(µ).

3. IMPLICIT Λ ITERATION

An efficient approach to the above mentioned
problem described in the previous section is the im-
plicit Λ iteration (ILI) method. Its good convergence
properties are due to the following ideas. Similarly
to integral methods, ILI uses the fact that although
the values of the radiation field are unknown, its be-
havior can be easily represented by using the inte-
gral form of the RT equation. However, contrary to
the ’global’ implicit scheme of the integral methods,
where the mean intensity of the radiation field at one
point is expressed as a linear function of the unknown
values of the source function at all the other points,
the ILI scheme can be regarded as ’local’. Namely, a
separate treatment of the in-going and the out-going
intensities of the radiation field within a forth-and-
back approach enables to derive implicit relations for
the corresponding mean intensities at each spherical
layer L = 1, N , in terms of the source function and
its derivative in that layer. These relations are in
general of the form:

J±
L = a±

L + b±LSL + c±LS′
L. (11)

According to the idea of the iteration factors, itera-
tive computation of the coefficients of these implicit
’closure’ relations between the unknown functions
(J± and S) gives rise to a substantial acceleration
of the ordinary iterative procedure.

Let us now derive relations (11) starting with
the integral form of RT Eq. (5), i.e. considering the
variation of the specific intensities between the lay-
ers L and L + 1 along the direction K tangent to
the sphere of radius r(K), for which it holds that
K ≥ L + 1. By assuming a piecewise polynomial
behavior for the source function S[τ(K)] between
points L and L + 1 along the direction K, we can
rewrite the integral in Eq. (5) in terms of the values
of the source function and its first derivative at these
two points, so that we have

I−L+1(K) = I−L (K)e−∆τ(K) + p−L (K)SL

+ p−L+1(K)SL+1 + q−L (K)[
dS

dτ(K)
]L

+ q−L+1(K)[
dS

dτ(K)
]L+1 (12a)

for the in-going intensities (from L to L + 1), and

I+
L (K) = I+

L+1(K)e−∆τ(K) + p+
L(K)SL

+p+
L+1(K)SL+1 + q+

L (K)[
dS

dτ(K)
]L

+q+
L+1(K)[

dS

dτ(K)
]L+1, (12b)
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for the out-going intensities (from L + 1 to L).
The coefficients p± and q± depend only on the

known optical distance ∆τL,L+1(K) between the two
consecutive points L and L+1 along the ray K. The
form of the coefficients depends on the assumed func-
tional representation for S(τ). For the cubic piece-
wise approximation it holds that:

p−L = p+
L+1 =

6
∆2

− 12
∆3

− e−∆(1 − 6
∆2

− 12
∆3

)

p−L+1 = p+
L = 1 − 6

∆2
+

12
∆3

− e−∆(
6

∆2
+

12
∆3

)

q−L = −q+
L+1 =

2
∆

− 6
∆2

+ e−∆(1 +
4
∆

+
6

∆2
)

q−L+1 = −q+
L = −1 +

4
∆

− 6
∆2

+ e−∆(
2
∆

+
6

∆2
)

where ∆ = ∆τ(K).
By using Eq. (7), we have

[ dS

dτ(K)

]
L

= µL
K

[dS

dτ

]
L

= µL
KS′

L (13)

and

[ dS

dτ(K)

]
L+1

= µL+1
K

[dS

dτ

]
L+1

= µL+1
K S′

L+1 (14)

where primes denote the derivatives with respect to
the radial optical depth τ . Inserting (13) and (14)
into Eqs. (12) and eliminating S′

L according to:

S′
L =

2
∆τ

(SL+1 − SL) − S′
L+1 (15)

the following expressions are obtained:

I−L+1(K) = a−
L+1(K)+b−L+1(K)SL+1+c−L+1(K)S′

L+1

(16a)
and

I+
L (K) = a+

L(K) + b+
L(K)SL + c+

L(K)S′
L (16b)

that relate the in-going, i.e. the out-going specific in-
tensities with the source function and its derivative
at the corresponding layer. The coefficients of Eq.
(16a) are:

a−
L+1(K) = I−L (K)e−∆τ(K) +

+
[
p−L (K) − 2µL

Kq−L (K)
∆τ

]
SL

b−L+1(K) = p−L+1(K) +
2µL

Kq−L (K)
∆τ

c−L+1(K) = µL+1
K q−L+1(K) − µL

Kq−L (K) (17a)

whereas those of Eq. (16b) are:

a+
L(K) = I+

L+1(K)e−∆τ(K) +

+
[
p+

L+1(K) +
2µL

Kq+
L (K)

∆τ

]
SL+1

b+
L(K) = p+

L(K) − 2µL
Kq+

L (K)
∆τ

c+
L(K) = µL+1

K q+
L+1(K) − µL

Kq+
L (K). (17b)

The coefficients given by (17a) should be com-
puted and stored in the forward step of each iteration
to be used later during the backward step for updat-
ing the current solution.

Finally, in order to derive the relations (11)
for the in-going and the out-going mean intensities,
we have to perform numerical integration of the per-
taining specific intensities over all directions K. As-
suming that IL(µ) varies linearly with µ between the
subsequent values I±L (K) at µL

K (0 ≤ µL
K ≤ 1), where

µL
L = 0 and µL

NT = 1, the weight coefficients are
given by:

WL(K) =




1
2 (µL

2 − µL
1 ), K = 1

1
2 (µL

K+1 − µL
K−1), K = 2, NT − 1

1
2 (µL

NT − µL
NT−1), K = NT

(18)
Let us now consider the forward and the back-

ward steps in more detail.

3.1 The forward process

We start each iteration with the layer L = 1
and the given upper boundary condition:

I−1 (K) = 0; K = 1, NT. (19)

According to (19), the coefficients (17a) for the first
layer are get equal to zero. We proceed with the
computation and storage of the coefficients (17a) at
all subsequent depth points. Let us note here that
the coefficients a−

L (K), L = 2, N are to be computed
with the old value (known from the previous itera-
tion) of the source function So. In order to match
the value of the old source function So used for the
computation of a−

L(K) with the updated (new) value
Sn at point L, we scale the function So by the fac-
tor So/Sn and re-write Eq. (16a) for layer L in the
form:

I−L (K) = [
a−

L (K)
So

L

+ b−L(K)]SL + c−L (K)S′
L. (20)

Here,

a−
L (K) = I−L−1(K)e−∆τL−1,L(K) +

+
[
p−L−1(K) − 2µL−1

K q−L−1(K)
∆τ

]
So

L−1

is computed with the old source function So, b−L (K)
and c−L (K) depend only on the known optical dis-
tances ∆τL−1,L(K), whereas SL and S′

L are the yet
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unknown source function and its τ− derivative at
layer L.

After numerical integration of (20) over all di-
rections we obtain the linear relation

J−
L = b−LSL + c−LS′

L, (21)

representing implicitly the values of the in-going
mean intensities. Hence, in the forward process,
ILI differs from the classical Λ iteration that re-
calculates J−

L from the old (known) source function
So(τ), in the use of the old source function only to
compute and store the coefficient a−

L (K) of the lin-
ear relation (20) at each radial optical depth point
τL (L=1,N) for further use in the backward process
of computation of the new values Sn(τ).

3.2 The backward process

Now, we proceed from the bottom layer N −
1, N for which the incident up-going intensities
I+
N (K) are given (explicitly or implicitly, e.g. by us-

ing the diffusion approximation), J+
N is known too.

Inserting in the expression for the total mean inten-
sity (10), re-written for L = N as

JN =
1
2
[J+

N + J−
N ], (22)

together with the Eq. (21) for J−
N , where S′

N can
be eliminated by assuming linear behavior of S(τ) in
the last layer

S′
N = S′

N−1 = (SN − SN−1)/∆τ, (23)

JN results in a linear combination of SN and SN−1.
A similar linear relation for JN−1 can be obtained
by using Eq. (16b) after integration over directions
and Eq. (21) for the layer N − 1. Then new values
Sn

N−1 and Sn
N can be easily derived. The derivatives

S′
N and S′

N−1 are to be computed from Eq. (23) and
the values I+

N−1(K) obtained from Eq. (16b). The
new values of SN−1, S′

N−1 and I+
N−1(K) can then

be used as known boundary conditions for the next
upper layer (N −1, N −2). Namely, these values are
used to compute the coefficients of Eq. (16b) at the
next point L (= N − 2) which, after the use of Eq.
(15), can be re-written for any layer L in the form:

I+
L (K) = a+

L(K) + b+
L(K)SL. (24)

Here, the coefficient b+
L(K) depends only on the

known optical distance, whereas the coefficient
a+

L(K) is computed with the updated values of
I+
L+1(K), SL+1 and S′

L+1. By integrating (24) over
directions, we obtain the linear relation

J+
L = a+

L + b+
LSL (25)

at each radial depth point L. Using Eq. (15) to elim-
inate S′

L from Eq. (21), i.e. to express S′
L in terms

of the yet unknown value of SL, and the known val-
ues of SL+1 and S′

L+1, we can write J−
L as a linear

function of SL only. Therefore, we obtain the linear
relation between JL and SL:

JL = aL + bLSL. (26)

The computation of the coefficients aL and bL of Eq.
(26) and its solution together with Eq. (9) to get
a new source function SL, is performed during the
backward process layer by layer to the surface.

4. RESULTS AND DISCUSSION

Here we test the above described procedure
on the solution of monochromatic scattering prob-
lem in a spherical atmosphere, as given in Avrett and
Loeser (1984). The source function is of the form:

S = αJ + (1 − α)B

with a scattering coefficient α = 0.5 and B = 1.
The inner and outer boundaries are at r(N) = 1 and
r(1) = 30, respectively, measured in units of the stel-
lar radius. The opacity law χ(r) is given by C/r2,
where the constant C is evaluated from the require-
ment that the total radial optical thickness of the
atmosphere is 4. Hence, the radial optical depth is
given by:

τ(r) =
120
29

(
1
r
− 1

30
).

This problem was solved by the implicit integral
method in the paper by Gros et al. (1997), and the
solutions were compared with those of Mihalas et al.
(1975), Rogers (1981) and Avrett and Loeser (1984).
In Table 1 we listed them, together with our results
obtained by ILI method (the last column).

It can be seen that the relative differences of
the solutions are about 1%. As pointed out in GCS,
the differences between the results may arise due to
different discretization in r (or in τ) and different ap-
proximations used to describe the behavior of S(τ)
between any two consecutive depth points. In order
to investigate both the accuracy and the convergence
properties of the method, a number of tests were run
with various discretization in τ (i.e. in r). As in the
plane–parallel case the best discretization is the one
that uses logarithmic spacing in the radial optical
depth steps (with 5-10 points per decade).

Fig. 2 shows the evolution with iterations of
the mean intensity of the radiation field, computed
by the forth-and-back implicit Λ iteration method.
Starting from S = B = 1 we get the exact solution,
practically, already in the second iteration. An addi-
tional iteration was needed to meet the tolerance cri-
terion (to stop the run of iterations) that the greatest
relative correction (at all radial optical depths) be-
tween two successive iterations be less than 1%. The
relative correction of 0.1% has been achieved in the
fifth iteration.
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Table 1. Values of J(r) obtained by different authors (Mihalas et al. (MKH), Rogers (R), Avrett and
Loeser (AL), Gros et al. (GCS))

r J(r)MKH J(r)R J(r)AL J(r)GCS J(r)this work

30 0.0636 0.0638 0.0642 0.0637 0.0638
29.6 0.0671 0.0674 0.0676 0.0675 0.0674
29 0.0716 0.0716 0.0721 0.0718 0.0718
28 0.0784 0.0785 0.0791 0.0787 0.0787
26 0.0920 0.0921 0.0928 0.0922 0.0924
24 0.106 0.107 0.108 0.1065 0.1068
20 0.141 0.140 0.142 0.1404 0.1411
16 0.182 0.187 0.190 0.1866 0.1877
12 0.260 0.255 0.261 0.2554 0.2573
9 0.345 0.336 0.340 0.3361 0.3387
6 0.493 0.468 0.476 0.4690 0.4724
4 0.638 0.615 0.627 0.6166 0.6206
2 0.864 0.849 0.859 0.8510 0.8553
1 0.964 0.961 0.986 0.9844 0.9779

Fig. 2. Mean intensity vs. optical depth. The
solid lines, labelled with the corresponding iterations
number, correspond to forth-and-back implicit Λ it-
eration. The circles mark the solution obtained by
Gros et al. (1997).

The obtained results confirm a good quality
and fast convergence properties of the implicit Λ iter-
ation method when applied to spherically symmetric
media.
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Dvosmerno implicitna Λ iteracija je
razvijena za rexavaǌe problema prenosa
zraqeǌa u plan-paralelnim sredinama, kada
su jednaqine prenosa zraqeǌa me�usobno po-
vezane integralom rasejaǌa koji se javǉa u
izrazu za funkciju izvora (Atanacković-Vukma-
nović, Crivellari i Simonneau 1997). Zahvaǉuju�i
implicitnom predstavǉaǌu funkcije izvora
u raqunu sredǌih intenziteta pri dvosmer-
nom tretiraǌu intenziteta koji se prostiru u

suprotnim pravcima, implicitna Λ iteracija
(ILI) se pokazala kao vrlo efikasan metod u
rexavaǌu linearnih i nelinearnih problema
prenosa zraqeǌa. U ovom radu ILI metoda
je uopxtena i primeǌena na probleme prenosa
zraqeǌa u sferno-simetriqnim sredinama.
Prikazani su rezultati za monohromatski
prenos zraqeǌa u sferno-simetriqnoj atmos-
feri i upore�eni sa rezultatima dobijenim
korix�eǌem drugih metoda.
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