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SUMMARY: In this paper, weakly nonlinear dynamics of spiral galaxies is stud-
ied, using reductive perturbation method. Omne primarely aims at the derivation
of possible soliton solution for two dimensional geometry, in the state of marginal
stability. In order to use proper coordinate transformation, it was necessary to
analyze stability of the linearized system of equations, and to define proper param-
eter regime. Such parameter regime is in agreement with the observational data,
too. The influence of finite-thickness of the galaxy disk on dispersive properties of
the system is studied, extending approximate solution of Poisson’s equation. For
both cases, infinitesimaly thin disk and disk of finite thickness, the same type of
NLS equation is derived, but with different coefficients for nonlinear and dispersive
terms. This means that corresponding soliton solutions have different properties.
By comparing soliton properties with observational data it is possible to control

validity of approximation for different geometry of the model.
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1. INTRODUCTION

Spirals are rather common structures pro-
duced in many different systems such as atmospheric
flows, some self-catalyzed chemical reactions, a va-
riety of networks (neurons, circuits or ecosystems),
and some life forms. The seminal work of Lin and
Shu (Bertin 2000) succeeded in producing a spiral
solution of a linearized density wave equation. In
the present work, we consider a nonlinear dispersive
wave model to study nearly collisionless dynamics
of the spiral galaxies, using reductive perturbation
method (Jaffrey and Taniuti 1964), with the em-
phasis on possible soliton solutions. Two different
geometries of the disk are discussed, and the cor-

responding solutions of the nonlinear equation are
given.
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2. GOVERNING EQUATIONS

The density wave model consists of transport
equations for the mass density p and the momentum
pv, together with the Poisson’s equation that relates
the density to the gravitational potential ¢. The
equilibrium state of the system is described as a rota-
tion with an angular velocity Q(r) about z-axis under
the balance of centrifugal and gravitational forces in
a frame rotating with constant angular velocity .
Then, the equilibrium velocity is vp, = (2 — Qo)r,
where Q2?r = —0¢/0r. The quantities ¢p and pg
are the equilibrium potential and the density, respec-
tively. The dispersive property originates from the
coupled Poisson’s equation, which is a second-order
elliptic partial differential equation.
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Case (a): The model of Lin and Shu assumes
delta function for the density in z-direction and ap-
proximates Poisson’s equation by

9¢(r,z = 0)

5 = +27iGo, (1)

in the vicinity of spiral arms, where o represents sur-
face mass density (Lin and Shu 1964). Here, the ge-
ometry of the model is infinitely thin disk.

Case (b): In this paper we propose more re-
alistic solution, introducing in the z-direction Gaus-
sians instead of delta function, f(z) for potential and
g(z) for density. Then, we can approximately express
Poisson’s equation in dimensionless form as follows:

where ¢,p are two-dimensional (r and ¢ depen-
dent) potential and density, respectively, A =
—a/(4nGc), B = —b/(4wGc) are constants depen-
dent on thickness of the disk L by way of a,b and ¢
given by:

L L
a— (1/2L)/_L F(2)dz, b= (1/2L)/_L F(2)dz

L

=120 [ g2z, 3)
—L

and Vﬁ_ denotes two-dimensional Laplacian in the

plane perpendicular to z.

3. NONLINEAR EQUATION WITH
SPIRAL SOLITON SOLUTION

Case (a): Let us first examine two-dimensional
fluid model of the infinitesimally thindisk galaxy
(Lin-Shu approximation). We normalize r and ¢ by
means of the wave length of the carrier wave in the
radial direction, 27 R/\, where R is the radial size of

-
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Fig. 1. Marginal stability curve for the zero thick-

ness fluid model. x axis represents wave number k
normalized by critical wave number ks, and y axis
represents Doppler shifted frequency w? normalized
by epicyclic frequency k2.
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the galaxy and A > 1 is a dimensionless constant
resulting from the Lin-Shu derivation; ¢ is normal-
ized by the period of the carrier wave 27/w, p by
po, both components of velocity by the phase ve-
locity wR/A, ¢ by w?R?/A? and G by w?R/(2po)).
Introducing 7 =t + ¢/, the set of governing equa-
tions will be somewhat reduced. Before making the
choice of transformation of coordinates and expan-
sion of variables, it is necessary to discuss parameter
regime. Dispersion relation in this case will be (Fig.

1):
w? = k? — 2wGpo|k|. 4)

Stability parameter is defined by ky =
k2/(2mGpo), so that all waves with k < ky are purely
stable. For this regime, dark soliton solution has
already been obtained (Kondoh et al. 2000). The
problem is that this solution has dark soliton solution
with diminishing density, and has no spiral pattern.

Taking into account initial limitation on k,
namely k > ki (where kv =max{1l/r, f'/f}, f =
po(r) and prime denotes the derivative with respect
to 1), we find that observational data suggest k =~ ks.
Marginal stability, as introduced above in terms of
local dispersion relation, defines a very important
condition for the basic state. In fact, if the system is
far on the side of instability, then it can be expected
from it to be subject to rapidly growing perturba-
tions, which are bound to change the properties of
the basic state on a short dynamical time scale. In
astrophysical applications, it is often said that vi-
olently unstable models are just the wrong choice
of basic state (Bertin 2000). The relevant regimes
for the galaxy disk must be close to the instability
threshold. In this case, a new transformation of vari-
ables has to be introduced according to Watanabe
(Watanabe 1969), different from the stable case (the
reason being that, in marginal stability, frequency
goes to zero, so that the group velocity becomes in-
finite). Starched coordinates and expansion of vari-
ables in our case are given as:

& = ¢e(t— cr) 77 = e?r,
p = p0+z Z 6n nm f 77) i(kr—wt) (5)
n=1m=—oo
0o 00 )
v = rQ + Z Z Enl/g,m n)el(kr—wt).

n=1m=—oo

Substituting (5) into governing equations (the trans-
port equations of mass density and momentum), and
using Lin-Shu solution (1) instead of Poisson’s equa-
tion, we derive the nonlinear equation:

-3/’1’1 32/’1’1 1,112 1,1
P s 3
in which P = —ky/k? = —1/2(0k/0w?) < 0, and

Q = —(3/2)r%/(kap?) < 0, so that PQ > 0. This
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type of equation has bright soliton solution moving
in the & direction:

iv

P (€ m) PO eh (B2 A)po(€ — 2A7))
v = a(gah1)nre "

Going back to the original coordinates, one obtains
the solitary structure solution with enhanced density
along the spiral, which explains the observed pattern
(see Fig. 2).

Case (b): We extend nonlinear analysis to the
more realistic case, taking the finite thickness effect
into account by way of the Poisson’s equation (2). It
will yield for & (marginal stability case), a NLS equa-
tion with the coefficients A and B dependent of n
(B/A = n that includes information about the thick-
ness). Since these coefficients determine the ampli-
tude, width and velocity of the soliton, a compar-
ison with the structure observed, makes it possible
to decide when the finite thickness approximation is
necessary for a given galaxy.

Fig. 2. FEnhanced density along the spiral in 3d;
solution of Eq.(4).

4. CONCLUSION

In this paper we studied weakly nonlinear dy-
namics of different galaxy models, using reductive
perturbation method, with the emphasis on possi-
ble soliton solutions. For 2-dimensional model, us-
ing Lin-Shu approximation, the NLS equation was
derived. Solution is the bright soliton, propagating
along the spiral. Having established the solitary so-
lution, we eliminate the main difficulty from the lin-
ear theory, that is the problem of searching gener-
ators of spiral wave and mechanism that maintains
waves on a long time scale (quasy-stationarity as-
sumption). We extended the 2-dimensional analysis
for galaxies by solving the Poisson’s equation in a
different manner and obtaining NLS equation. The
latter is with coefficients different for nonlinear and
dispersive terms, which means different properties of
soliton. Comparing the evaluated soliton properties
with the observational data, one can control the va-
lidity of approximations used in either of the models.
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Y oBOM pamy je mpoydaBaHa CJIabO HeJu-
HeapHa NMHAMUKA COUPAJHUX TAJaKCHja, yIOTpe-
6oMm penykruBHe meprypbammone merome. Oc-
HOBHU IIJL je oxpebuBame moryher conmuronckor
pemema 3a IBOAMMEH3MOHY I'€OMETPHUjY, 38 CHUC-
TEeM KOjU je y CTamy T'PaHUYHE CTAOUIHOCTU. Y
uupy ymnorpebe omrosapajyhe tpaxchopmanuje
KOOpAMHATa HEONXOMHO je MPeTXONHO M3BPIIUTH
aHAJIM3Y JIUHEAPU30BAHOT CHCTEMa jeIHAUYMHA U
nepuHHCATU OArOBapajynu peskuM mapameTapa.
PesxnM mapamerapa ne¢uHHCAH Ha OBaj HAUUH
y CarjylaCcHOCTU je Ca MOCMAaTPAUYKUM II0JAlUMA.
IIpoyuen je yrtumaj koHauHe nebJ/bUMHE TajIak-
TUYKOD OUCKa HA DUCIEP3UBHE OCOOMHE CUCTEMA,
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pemaBajyhu IloacoHoBY jemmaumuy y mpormmpe-
HOM OOJIMKY y ONHOCY Ha HPETXOMHO AIlPOKCU-
MaTuBHO pememne [loacoHOBe jemnauwne Koje Cy
npemnoxkunau Jluae m Uly. Y oba cayuaja, 3a
OeCKOHAYHO TaHAK NUCK, KA0 U 3a NUCK KOHAUHE
nebmuHe, M3BEMEeH je UCTU OOJIUK HeJWHeapHe
IIpenuurepose jenHauwne, aau ca PaA3TUIUTUM
KOepUIUjeHTUMa Y3 HEJNHEAPHW U IUCIEP3VBHU
unan. OBo 3Haum ma ogrosapajyha coauTon-
CKa pemema uMajy pasiauuure ocobuue. Ilope-
DemeMm ocobuHa COMUTOHA €A TOCMATPAYKAM IIO-
manmuMa Moryhe je KOHTPOJIMCATH na JIU je KO-
pumrhena ampokcuMaluja 3a TeOMETPHU)y MOIEa
OIDABAAHA.



