A VARIANCE-COMPONENTS ANALYSIS
FOR THE LONGITUDE-NETWORK ADJUSTMENT

G. Perović¹ and Z. Cvetković²

¹Faculty of Civil Engineering – Department of Geodesy,
Bul. kralja Aleksandra 73/I, 11000 Belgrade, Yugoslavia

²Astronomical Observatory, Volgina 7, 11160 Belgrade-74, Yugoslavia

Due to technical problems a number of formulae and notation have been erroneously printed.

\[
\begin{align*}
\text{(a) Linear: } & \quad v = Ax + Bt + f, \quad f = l_0 + 1 \\
\text{(b) Stochastic: } & \quad M[v] = 0, \quad M[vv^T] = K = \sigma^2P^{-1} = \sigma^2\text{diag}\{P_i^{-1}\}.
\end{align*}
\]

where: \(v \) – vector of measurement corrections; \(l \) – vector of measurements; \(l_0 \) – vector of approximate values of measured quantities; \(x \) – vector of basic parameters; \(t \) – vector of additional parameters; \(A \) and \(B \) – matrices of known coefficients; \(\sigma^2 \) – variance coefficient, (in calculations assumed \(\sigma^2 = 1 \)); \(K \) – variance-covariance matrix of measurements and \(P \) – matrix of measurement weights.

\[
v = Ax + Bt + f, \quad f = l_0 - 1
\]

where we study the influences of \(Bt \) in the observations which can be described with the vector of additional parameters \(t \), whereas the vector of basic parameters \(x \) is the same in all the functional models.

The vector of basic parameters \(x \) is the

respect to the term \(Bt \) representing the effects of individual

the vector \(t \) has 8 components: variation with time of latitude

night (23 observing nights). Therefore, the \(t \) vector

Model FM1 the \(t \) vector is extended with additional