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SUMMARY: The dynamics of bodies under the combined action of the gravita-
tional attraction and the radiative repelling force has large and deep implications in
astronomy. In the 1920s, the Romanian astronomer Constantin Popovici proposed
a modified photogravitational law (considered by other scientists, too). This paper
deals with the collisions of the two-body problem associated with Popovici’s model.
Resorting to McGehee-type transformations of the second kind, we obtain regular
equations of motion and define the collision manifold. The flow on this boundary
manifold is wholly described. This allows to point out some important qualitative
features of the collisional motion: existence of the black-hole effect, gradientlikeness
of the flow on the collision manifold, regularizability of collisions under certain con-
ditions. Some questions, coming from the comparison of Levi-Civita’s regularizing
transformations and McGehee’s ones, are formulated.

1. INTRODUCTION

The dynamics of the components of the so-
lar system is mainly ruled by gravitation.However,
nongravitational forces also influence the motion.
Among these, the direct solar radiation pressure
plays a central role. If for bodies with small area-
to-mass ratio (planets, satellites, asteroids) the re-
pelling radiative force is negligible as compared to
the gravitation, there equally are bodies (particles in
cometary tails, dust grains) for which the radiation
influence become considerable and can even prevail
over the gravitation.

The interest in dynamical effects of the radia-
tion pressure goes as far back as the early 1600s; Ke-

pler himself, in his Harmonices mundi (1619), stud-
ied this problem. Later on, many outstanding scien-
tists focused on this topic; it is sufficient to men-
tion among them Newton, Huygens, Coulomb, or
Maxwell.

An interesting practical problem in this con-
text was addressed by Tsiolkovsky in 1921 and Tsan-
der in 1924. Based on Lebedev’s experiments (1899
− 1907), which allowed to measure the radiative fo-
rce, they imagined interplanetary spacecrafts, en-
dowed with large mirrors, driven by the direct solar
radiation pressure. Hermann Oberth also dealt with
this problem in 1923, resuming it three decades later,
in 1954. Since then, the subject was largely discussed
(see Anisiu 1995 and the references therein).
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In the first quarter of the 20th century, the Ro-
manian astronomer Constantin Popovici proposed a
modification of the inverse-square law that results
from the combination of the Newtonian attraction
and the repelling force of radiation. He added a
term depending on the radial velocity and on the
speed of light (Popovici 1923), which made his law
− as he wrote − applicable to ”radial attractive or
repulsive (whether gravitational, electrical, or light
repulsion)” forces. The physical background of this
modification is the change in the energy of photons
due to the change of wavelength, due in turn to dis-
tance variation. Later on, Popovici (1940) resumed
this model, describing explicitly the motion of a body
in the photogravitational field of a star.

Popovici’s model was independently used by
Armellini (1937) (but within a much less realistic
framework, involving only the gravitational force)
and Chazy (1939). Moreover, Nadolschi and Plă-
cinţeanu (1940) applied this law to the motion of
electrons around the atomic nucleus.

In this paper we start a systematic study of
the two-body problem in Popovici’s photogravita-
tional field. Since the model presents singularities
corresponding to collisions, we shall deal here with
the collisional motion.

Section 2 presents Popovici’s model in the
form considered by Anisiu (1995). The equations
of motion of the two-body problem associated with
this model, as well as the first integral of the angular
momentum, are established in Section 3.

To remove the collision singularity, in Section
4 we resort to a set of McGehee-type transforma-
tions of the second kind (McGehee 1974). Under
these transformations, the equations of motion be-
come regular. Moreover, the singularity is blown
up and replaced by the so-called collision manifold,
pasted on the phase space instead of it.

Section 5 describes the flow on the collision
manifold. This flow is deprived of physical signifi-
cance, but − due to the continuity of solutions with
respect to initial data − it offers information about
the trajectories that neighbour collision. Two situ-
ations are considered: C = 0 and C �= 0 (where C
stands for the angular momentum constant). In the
first case (radial motion), the flow on the collision
manifold (homeomorphic to a cylinder) consists of
two circles of degenerate equilibria (UC = the upper
circle, and LC = the lower circle), heteroclinic or-
bits that move from UC to LC, and trajectories that
leave UC or tend to LC. For nonzero angular momen-
tum, the flow on the collision manifold has different
structures, according to the increase of |C|. First,
the phase portrait imitates the one corresponding to
C = 0, with the difference that the circles of degen-
erate equilibria are replaced by periodic orbits. As
C increases in module, the two periodic orbits ap-
proach each other, and coincide for a critical value
of |C| (entailing the existence of a single periodic
orbit and the vanishing of the heteroclinic trajecto-
ries). Lastly, when |C| exceeds the critical value, the
periodic orbit vanishes, and the flow consists only of
trajectories that wind upwards around the cylinder.

Section 6 formulates some conclusions, em-
phasizing the main qualitative features of the col-
lisional motion: the existence of the black-hole effect
(spiral collision), the gradientlikeness of the flow on
the collision manifold, the nonregularizability of col-
lisions for |C| smaller than or equal to the critical
value.

Section 7 addresses a challenge. Regularizing
the motion equations and the angular momentum in-
tegral via Levi-Civita’s transformations, we are led
to a comparison between these and McGehee’s blow
up. Is there a relationship between these transforma-
tions? If yes, what is this relationship? The answer
to these questions is still unknown.

One could ask: why make Popovici’s model
revive, even if resumed by illustrious astronomers as
Armellini and Chazy? There are several reasons for
it. On the one hand, it is a physically realistic model,
which adds a well-known effect (even if very small)
to the classical model, without trying to replace it.
On the other hand, Popovici’s model joins two-body
problems with drag or thrust that were tackled by
a lot of authors: Poynting (1903), Plummer (1905,
1906), Robertson (1937), Wyatt and Whipple (1950),
Brouwer and Hori (1961), Mittleman and Jezewski
(1982), Mavraganis (1991), Mavraganis and Micha-
lakis (1994); for more details, see Burns et al. (1979),
Mignard (1992), Diacu (1999). Lastly, our paper
points out the usefulness of the powerful tool of
McGehee transformations in describing the behavi-
our of the orbits that approach collision for no matter
what kind of field.

2. POPOVICI’S MODEL

Let us write the Newtonian attractive force (in
module) in the generic form

|FN | = −A/r2, (1)
with A > 0. Also, let us consider for the radiative
repelling force (in module, too) the generic expres-
sion

|FR| = R/r2, (2)
with R > 0. The photogravitational resulting force
(of mixed nature) obviously is

|Fpg| = −k/r2, (3)

where k stands for A − R.
Of course, the photogravitational force can be

attractive or repulsive, as k is positive or negative,
respectively. This depends on the characteristics of
both field-generating body (especially luminosity)
and ”satellite” body (especially area-to-mass ratio).
In the solar system, for instance, k is positive for
the interaction Sun-planets, but it can be negative in
the case of micrometeoric dust, particles in cometary
tails, or solar sails.

There were lots of papers that treated the two-
body problem associated with a force of the type (3)
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(for a survey, see, e.g., Polyakhova 1986; McInnes
1991). Moreover, the much more general case of
k = k(t) or k = k(θ), where t is the time and θ
denotes a polar angle, was also tackled by many au-
thors, among which we arbitrarily quote: Gyldén
(1884), Messchersky (1902), Jeans (1924), Savedoff
and Vila (1964), Saari (1977), Saslaw (1978), Şelaru
et al. (1992, 1993), etc.

Let us come back to the law (3) with k =
constant. Popovici’s contribution consists of the new
form given to this law

|Fpg| = − A

r2
+

R

r2
− Rṙ

cr2
, (4)

where ṙ denotes the velocity vector projection on the
radius vector, while c is the speed of light.

What is the physical background of Popovi-
ci’s model? Let us consider a pointlike source that
emits a radiation of intensity I and wavelength λ.
Let ∆σ be a surface element that receives normally
the energy ∆Q. Then, if we take into account the
fact that a change in r leads to a change in λ, hence
to a change in the energy of photons that fall on ∆σ,
the radiative energy received by ∆σ in the time unit
will approximately be ∆Q = I(1 − ṙ/c)∆σ/(4πr2).
This leads straightforwardly to the last two terms in
the right-hand side of formula (4).

Armellini (1937) proposed a similar law, but
much less realistic from the physical standpoint, in-
volving the gravitational force only. He assigned to
(1) the modified form |F| = −A(1 + εṙ)/r2 (ε be-
ing an extremely small positive constant), claiming
that ”a large number of cosmogonical problems can
be immediately explained in this way”. However,
Armellini emphasized that his ”law” is a simple hy-
pothesis.

A more condensed form given by Popovici to
his law is

|Fpg| = −k(1 + εṙ)
r2

, (5)

in which ε = R/(ck) and k �= 0. The shortcoming
of (5) is that, for k = 0, (4) and (5) are no more
equivalent.

Pointing out this shortcoming, Anisiu (1995)
proposed a unitary form for (4) and (5), namely

|Fpg| = −k + qṙ

r2
, (6)

where q = R/c > 0. In the case k = 0, the expression
(5) is obtained from (6) by putting ε = q/k.

3. EQUATIONS OF MOTION AND THE
FIRST INTEGRAL

The two-body problem associated with a force
of the type (6) can be reduced to a central-force prob-
lem. Fixing the field-generating source at the origin
of a polar coordinate system, the equations that de-
scribe the relative motion of the ”satellite” body read

r̈ − rθ̇2 = −k + qṙ

r2
, (7)

rθ̈ + 2ṙθ̇ = 0. (8)

where the dot marks differentiation with respect to
the time t. It is clear that the motion is confined to
a plane.

Since the force field is a central one, the equa-
tions of motion admit the first integral of angular
momentum

r2θ̇ = C, (9)
immediately obtainable from (8). In (9), C stands
for the angular momentum constant.

The most important consequence of the exis-
tence of the term in ṙ in the expression of the force
is the non-conservation of the total energy. Conse-
quently, a first integral of energy does not exist (as
in the classical photogravitational case).

Equations (7) and (9) constitute the basis for
our qualitative endeavours. In the sequel, the field-
generating source and the ”satellite” body will be
called centre and particle, respectively.

4. McGEHEE-TYPE TRANSFORMATIONS

The equations of motion present an isolated
singularity at r = 0. Using a Painlevé-type criterion,
one can prove that this singularity corresponds to a
collision particle-centre (Mioc and Stavinschi 2000b,
2002).

To remove this singularity, we shall apply
McGehee-type transformations of the second kind
(McGehee 1974). For the first step, we consider the
real analytic diffeomorphisms

rṙ = u,

r2θ̇ = v.
(10)

Under these transformations, which scale down the
polar components of the velocity, the equations of
motion become

ṙ =
u

r
,

θ̇ =
v

r2
,

u̇ =
u2 + v2 − qu

r2
− k

r
,

v̇ = 0,

(11)

whereas the first integral of angular momentum ac-
quires the form

v = C. (12)
The singularity at r = 0 still persists, there-

fore the second step of the McGehee-type transfor-
mations consists of the real analytic diffeomorphism

dt = r2ds, (13)
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which rescales the time. Keeping, by abuse, the same
notation for the new functions of the timelike vari-
able s, the motion equations become

r′ = ru,

θ′ = v,

u′ = u2 + v2 − qu − kr,

v′ = 0,

(14)

where ′ = d/ds. Of course, the angular momentum
integral preserves its form (12).

5. COLLISION MANIFOLD

One observes that the equations of motion
(14) are now regular. This means that the phase
space can be analytically extended to contain the
boundary manifold

Mcol = {(r, θ, u, v) | r = 0}. (15)
Let us consider C as a parameter. We can

therefore define the constant-angular-momentum
manifold

MC = {(r, θ, u, v) | v = C}. (16)
The so-called collision manifold is defined as

the intersection M0 = Mcol ∩ MC , namely

M0 = {(r, θ, u, v) | r = 0, θ ∈ S1, u ∈ RR, v = C}.
(17)

In this way, we have blown up the singularity at r = 0
and pasted the manifold M0, instead of it, on the
phase space.

An important remark is to be made here: col-
lisions are possible not only for C = 0 (as in the
classical Newtonian model), but also for nonzero C.
Collisions for C = 0 are rectilinear; in case C �= 0,
they are spiral (the so-called black-hole effect).

By the manner in which we have defined the
collision manifold, for every fixed value of the angu-
lar momentum constant, M0 is homeomorphic to a
strip of width 2π in the (θ, u)-plane. Since θ ∈ S1

(the segment [0, 2π] with the end points pasted to-
gether), the strip M0 can also be identified with a
2D cylinder. Both the strip and the cylinder actu-
ally are imbedded in the 4D full phase space of the
coordinates (r, θ, u, v).

The remainder of this paper will deal with the
description of the flow on the collision manifold. This
flow is deprived of physical significance, but − due to
the continuity of solutions with respect to the initial
conditions − it provides valuable information about
the orbits that approach collision.

By (14) and (17), the vector field on M0 reads

θ′ = C,

u′ = u2 − qu + C2.
(18)

Consider the radial motion case (C = 0). In
this case, θ = θ0, with arbitrary θ0 ∈ S1, and the
flow on the M0 cylinder consists of:

- two circles formed by degenerate equilibria:
the lower circle LC (θ = θ0, u = 0) and the upper
circle UC (θ = θ0, u = q);

- heteroclinic orbits that move downwards,
from UC to LC;

- orbits that move upwards, tending to LC or
ejecting from UC.

The phase portrait of this case is sketched in
Fig. 1.

Fig. 1. The flow on the M0 strip for C = 0.

Consider now the nonrectilinear motion (C �=
0). In the case 0, |C| < q/2, equations (18) easily
lead to the dependence

u(θ) =
q

2
−
√

q2 − 4C2

2
tanh

(√
q2 − 4C2

2C
θ + K1

)
,

(19)
where the integration constant K1 is determined
from the initial conditions θ(s = s0), u(s = s0).

The flow on the M0 cylinder consists of:
- two periodic orbits (relative equilibria): the

lower one (LPO) at u1 = (q −
√

q2 − 4C2)/2, and
the upper one (UPO) at u2 = (q +

√
q2 − 4C2)/2 (it

is clear that 0 < u1 < u2 < q);
- heteroclinic orbits that move downwards,

ejecting asymptotically fromUPO and tending asym-
ptotically to LPO;

- orbits that move upwards, tending asympto-
tically to LPO or ejecting asymptotically from UPO.

The phase portrait of this case is plotted in
Fig. 2.

Consider the special value |C| = q/2. Equa-
tions (18) lead to

u(θ) =
q

2

(
1 − δ

θ + K2

)
, (20)

where K2 is an integration constant, determinable
from the initial data, whereas

δ =

{
0, for u = q/2;

1, for u �= q/2.
(21)
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Fig. 2. The flow on the M0 strip for 0 < C < q/2 (left) and −q/2 < C < 0 (right).

Fig. 3. The flow on the M0 strip for C = q/2 (left) and C = −q/2 (right).

Fig. 4. The flow on the M0 strip for C > q/2 (left) and C < −q/2 (right).
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The flow on the M0 cylinder consists of:
- one periodic orbit (relative equilibrium): PO

at u = q/2;
- orbits that wind upwards around the cylin-

der, tending asymptotically to PO, or ejecting asym-
ptotically from it.

The phase portrait in this case is represented
in Fig. 3.

Lastly, let us consider the situation |C| > q/2.
Equations (18) lead to

u(θ) =
q

2
+

√
4C2 − q2

2
tan

(√
4C2 − q2

2C
θ + K3

)
,

(22)
where the integration constant K3 is determined
from the initial conditions.

The flow on the M0 manifold now consists
only of orbits that wind upwards around the cylin-
der; they look like in Fig. 4.

6. CONCLUDING REMARKS

The above results allow to formulate some co-
ncluding remarks:

- Collisions in the two-body problem associ-
ated with Popovici’s field occur not only for zero an-
gular momentum (radial motion), but also for nonze-
ro angular momentum (spiral motion with black-hole
effect). This was already pointed out for some clas-
sical potentials (e.g., Wintner 1941; McGehee 1981;
Diacu et al. 1995; Stoica and Mioc 1997; Mioc and
Stavinschi 2000a), but not for a field of such a struc-
ture yet.

- For C = 0, the two circles of degenerate equi-
libria on M0 are situated at the maximum reciprocal
distance (q, on the u-axis). For 0 < |C| < q/2, they
become relative equilibria (periodic orbits) and ap-
proach each other as |C| increases. For |C| = q/2, the
two periodic orbits coincide. Finally, for |C| > q/2,
they disappear.

- For |C| ≥ q/2, the flow on the collision man-
ifold is gradientlike with respect to the u-coordinate.

- Having in view the motion equations (14) for
the full phase space, it is clear that collisions (r → 0
in the future) may occur only for u < 0, whereas
ejections (r → 0 in the past) may occur only for
u > 0. This means that a collision orbit may reach
M0 only in the region below the axis u = 0, while
an ejection orbit may leave M0 only in the region
above this axis. This further means that collision
solutions are not regularizable for |C| ≤ q/2 (as in
other cases, illustrated, e.g., by Diacu et al. 2000, or
Mioc and Stavinschi 2001), but become regularizable
for |C| > q/2.

7. APPENDIX: A CHALLENGE

In this study, to avoid the singularities, we
resorted to the McGehee-type transformations. But

we could use a lot of regularizing transformations. In
this section we shall apply Levi-Civita’s (1903) trans-
formations (see also Aarseth and Zare 1974; Zare
1974; Şelaru 1997a,b) − based on Euler’s (1767) reg-
ularization − to the motion equations, just to com-
pare the results and to address some questions.

Let us apply Levi-Civita’s transformations to
the motion equations (7)−(8). These transforma-
tions are

r = ξ2,

ṙ =
η

ξ
,

θ̇ = y,

(23)

and make the motion equations read

ξ̇ =
η

2ξ2
,

η̇ =
η2

2ξ2
+ ξ3y2 − k

ξ3
− qη

ξ4
,

θ̇ = y,

ẏ = −2ηy

ξ3
,

(24)

while the angular momentum first integral becomes

ξ4y = C. (25)
Since the singularity at ξ = 0 persists, we pro-

ceed to a reparameterization of the time via

dt = ξ4dτ, (26)
which leads to the following equations of motion:

dξ

dτ
=

1
2
ξ2η,

dη

dτ
=

1
2
ξη2 + ξ7y2 − kξ − qη,

dθ

dτ
= ξ4y,

dy

dτ
= −2ξηy,

(27)

where we preserved, by abuse, the same notation for
the new functions of τ .

Having in view the first integral of angular mo-
mentum, which keeps its form, equations (27) can
also read

dξ

dτ
=

1
2
ξ2η,

dη

dτ
=

1
2
ξη2 + Cξ3y − kξ − qη,

dθ

dτ
= C,

dy

dτ
= −2ξηy.

(28)

Comparing these equations with the motion
equations (14), two questions arise:
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- Is there a relationship between Levi-Civita’s
transformations and McGehee’s blow up?

- If yes, what is this relationship?
These questions represent a challenge for the

research we have performed in this paper. The an-
swer will be given elsewhere.

Acknowledgements – The authors are indebted to
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Str. Cireşilor 19, RO-3400 Cluj-Napoca, Romania

UDK 521.17 : 52-59
Originalni nauqni rad

Dinamika tela izlo�enih kombinovanom
dejstvu gravitacionog privlaqeǌa i sile ra-
dijativnog odbijaǌa ima velike i duboke im-
plikacije u astronomiji. Dvadesetih godina
dvadesetog veka rumunski astronom Konstan-
tin Popovici je predlo�io modifikovan fo-
togravitacioni zakon (razmatrali su ga tako-
�e i drugi nauqnici). Ovaj rad se bavi su-
darima problema dvaju tela u vezi sa Popovi-
cijevim modelom. Pribegavaju�i transfor-
macijama MekGijevog tipa druge vrste dobi-

jamo regularne jednaqine kretaǌa i defini-
xemo skup sudara. Tok na ovaj graniqni skup
je u potpunosti opisan. Ovo dozvoǉava da se
istaknu neke va�ne kvalitativne karakteris-
tike sudarnog kretaǌa: postojaǌe efekta crne
rupe, tok na sudarni skup nalikuje gradijentu,
regularizibilnost sudara pod odre�enim us-
lovima. Formulisana su neka pitaǌa koja do-
laze od pore�eǌa regularizuju�ih transfor-
macija Levi-Civita i MekGija.
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