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Str. Cuţitul de Argint 5, RO-75212 Bucharest, Romania

(Received: March 10, 2002)

SUMMARY: The two-body problem associated with a force field described by a

potential of the form U =
∑n

k=1 ak/rk (r = distance between particles, ak = real
parameters) is resumed from the only standpoint of symmetries. Such symmetries,
expressed in Hamiltonian coordinates, or in standard polar coordinates, are recov-
ered for McGehee-type coordinates of both collision-blow-up and infinity-blow-up
kind. They form diffeomorphic commutative groups endowed with a Boolean struc-
ture. Expressed in Levi-Civita’s coordinates, the problem exhibits a larger group
of symmetries, also commutative and presenting a Boolean structure.

1. INTRODUCTION

The name of zonal satellite problem was as-
signed by Mioc and Stavinschi (1998a; hereafter Pa-
per I) to a special class of two-body problems, the
one associated with a potential of the form U =∑n

k=1 ak/rk, where r is the distance between par-
ticles, while ak are real parameters. This denomina-
tion is due to the fact that the best known potential
of this type is that represented by the zonal part of a
planetary gravitational potential (see also Cid et al.
1983).

This class of problems of particle nonlinear
dynamics generalizes a lot of classical models, as
those of Kepler, Manev, Schwarzschild, Fock, Reiss-
ner-Nordström, Coulomb, Van der Vaals, etc. It also
has implications in astrophysics, mechanics, celestial
mechanics and dynamical astronomy, space dynam-
ics, even atomic physics. To have an idea about the
degree of generality of the zonal satellite problem,
see Paper I and the references therein.

A first qualitative insight into the zonal satel-
lite problem was offered in Paper I. A chain of McGe-
hee-type transformations of the second kind (McGe-
hee 1974) was used to blow up the collision singu-
larity and to obtain regular equations of motion and
first integrals. Then the flow on the collision mani-
fold and in its neighbourhood was described. A sec-
ond step was performed also by Mioc and Stavinschi
(1998b; hereafter Paper II), who tackled the infin-
ity manifold, and depicted the flow on it and in its
neighbourhood.

In this paper we resume the zonal satellite
problem from a single standpoint: symmetries. In
Section 2 we invoke the basic equations of the prob-
lem in Hamiltonian coordinates. The equations of
motion present nice symmetries that form a commu-
tative group endowed with a Boolean structure.

In Section 3 we refer to the McGehee trans-
formations that make the singularity blow up and
replace it by a manifold pasted on the phase space.
Dwelling on the vector field that describes the prob-
lem in standard polar coordinates and velocity com-
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ponents, and in physical time, we point out the sym-
metries it holds. These symmetries also form a com-
mutative group endowed with a Boolean structure.

Section 4 tackles the equations of motion ex-
pressed in McGehee-type collision-blow-up coordi-
nates. These equations also exhibit symmetries,
which form a group endowed with the same features
as those described in Sections 2 and 3.

In Section 5 we recall the McGehee-type in-
finity-blow-up coordinates, intended to extend the
problem to the limiting case of escape/capture. Ex-
pressed in these coordinates, the vector field has sym-
metries that form another group, presenting the sa-
me characteristics as those pointed out in Sections 2,
3, and 4.

Just to make a comparison with other regu-
larizing transformations, in Section 6 we transpose
the initial equations into Levi-Civita’s (1903) coor-
dinates. The corresponding vector field also exhibits
symmetries, which form a doubly larger group than
the previous ones. The commutativity and the Boo-
lean structure are kept.

These results are of much help in better under-
standing the local flows of the problem in the neigh-
bourhood of both collision/ejection and escape/cap-
ture, as well as some features of the global flow.

2. SYMMETRIES IN HAMILTONIAN
COORDINATES

Reducing the two-body problem to a central-
force problem, Mioc and Stavinschi (Paper I) wrote
the corresponding equations of motion in canonical
formalism:

q̇ = ∂H(q,p)/∂p,

ṗ = −∂H(q,p)/∂q,
(1)

with the Hamiltonian

H(q,p) = |p|2 /2 −
n∑

k=1

ak/ |q|k . (2)

Recall that q = (q1, q2) ∈ RR2\{(0, 0)} and
p = (p1, p2) ∈ RR2 are the position (configuration)
vector and the momentum vector of one body (par-
ticle) with respect to the other (centre), respectively.

Remark 1. The equations of motion admit
the first integrals of energy and angular momentum
(Paper I; Mioc and Stavinschi 2000). However, since
they play no role in the present treatment, we shall
leave them aside.

Let us write the vector field (1) explicitly. By
(2), it reads

q̇1 = p1,

q̇2 = p2,

ṗ1 = −
n∑

k=1

kak(q2
1 + q2

2)
−k/2−1q1,

ṗ2 = −
n∑

k=1

kak(q2
1 + q2

2)
−k/2−1q2.

(3)

Proposition 1. The vector field (3) holds
seven symmetries, as follows:

S1(q1, q2, p1, p2, t) = (q1, q2,−p1,−p2,−t),

S2(q1, q2, p1, p2, t) = (q1,−q2, p1,−p2, t),

S3(q1, q2, p1, p2, t) = (−q1, q2,−p1, p2, t),

S4(q1, q2, p1, p2, t) = (q1,−q2,−p1, p2,−t),

S5(q1, q2, p1, p2, t) = (−q1, q2, p1,−p2,−t),

S6(q1, q2, p1, p2, t) = (−q1,−q2,−p1,−p2, t),

S7(q1, q2, p1, p2, t) = (−q1,−q2, p1, p2,−t).

(4)

Proof. Examining equations (3), it is easy to
show that they are invariant to the transformations
described by (4).

Proposition 2. Out of the seven symmetries
(4), only three are independent.

Proof. Consider, for instance that the sym-
metries S1, S2, S3 are mutually independent. It is
easy to show that

S4 = S1 ◦ S2,

S5 = S1 ◦ S3,

S6 = S2 ◦ S3,

S7 = S1 ◦ S2 ◦ S3.

(5)

Choosing arbitrarily three different symmetries in
{Si | i = 1, 7}, and considering them as independent
of each other, an analogy to the above structure is
established. The proposition is proved.

Theorem 1. The set G = {I} ∪ {Si | i =
1, 7} (where I denotes the identity), endowed with
the composition law ”◦” forms a symmetric, com-
mutative group.

Proof. By virtue of Propositions 1 and 2, it
is easy to construct the composition table
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◦ I S1 S2 S3 S4 S5 S6 S7

I I S1 S2 S3 S4 S5 S6 S7

S1 S1 I S4 S5 S2 S3 S7 S6

S2 S2 S4 I S6 S1 S7 S3 S5

S3 S3 S5 S6 I S7 S1 S2 S4

S4 S4 S2 S1 S7 I S6 S5 S3

S5 S5 S3 S7 S1 S6 I S4 S2

S6 S6 S7 S3 S2 S5 S4 I S1

S7 S7 S6 S5 S4 S3 S2 S1 I




that proves the theorem.

Corollary 1. The group G is endowed with a
Boolean structure.

Proof. Examining the composition table abo-
ve, it is clear that every element is its own inverse
with respect to the composition law ”◦”.The result
is proved.

3. SYMMETRIES IN STANDARD POLAR
COORDINATES

To remove the isolated singularity at the origin
q = (0, 0), which corresponds to a collision particle-
centre (e.g. Mioc and Stavinschi 2001, 2002), in
Paper I the following chain of McGehee-type trans-
formations of the second kind (McGehee 1974) was
used:

r = |q| ,
θ = arctan(q2/q1),

ξ = ṙ = (q1p1 + q2p2)/ |q| ,
η = rθ̇ = (q1p2 − q2p1)/ |q| ,

(6)

which introduces the standard polar coordinates and
the polar components of the velocity;

x = rn/2ξ,

y = rn/2η.
(7)

which scale down the components of the velocity;

ds = r−n/2−1dt. (8)
which rescales the time. Recall that all these trans-
formations are real analytic diffeomorphisms.

Let us dwell, for the moment, on the vector
field that results after the transformations (6). Its
expression is (Paper I):

ṙ = ξ,

θ̇ = η/r,

ξ̇ = η2/r −
n∑

k=1

kak/rk+1,

η̇ = −ξη/r,

(9)

This nonregular vector field describes the motion in
standard polar coordinates. Supposing that 0 < r <

+∞, we may transpose the remarkable property of
this model pointed out in Section 2 under the form
of

Proposition 3. The vector field (9) holds of
seven symmetries, as follows:

Spol
1 (r, θ, ξ, η, t) = (r, θ,−ξ,−η,−t),

Spol
2 (r, θ, ξ, η, t) = (r,−θ, ξ,−η, t),

Spol
3 (r, θ, ξ, η, t) = (r, π − θ, ξ,−η, t),

Spol
4 (r, θ, ξ, η, t) = (r,−θ,−ξ, η,−t),

Spol
5 (r, θ, ξ, η, t) = (r, π − θ,−ξ, η,−t),

Spol
6 (r, θ, ξ, η, t) = (r, π + θ, ξ, η, t),

Spol
7 (r, θ, ξ, η, t) = (r, π + θ,−ξ,−η,−t).

(10)

Proof. Examining equations (9), it is easy to
show that they are invariant to the transformations
described by (10).

Let us see what these symmetries mean. Con-
sidering separately the variables, (t,−t) corresponds
to motion in the future/past; (ξ,−ξ) means out-
wards/inwards motion; (η,−η) means clockwise/co-
unterclockwise motion; finally, (θ,−θ), (θ, π − θ),
(θ, π + θ) correspond to positions shifted mutually
by 2θ, π − 2θ, and π, respectively. As to their com-
binations into symmetries, Spol

1 corresponds to the
reversibility of the flow: for every solution, there is
another solution that has the same position coordi-
nates and opposite velocities, all in reversed time.
Spol

2 implies that, for every solution, there is another
solution with opposite θ and η coordinates, and so
forth.

Proposition 4. The symmetries (10) are dif-
feomorphically the same as the symmetries (4).

Proof. Defining

Spol
i (r, θ, ξ, η, t) = Si(q1, q2, p1, p2, t), i = 1, 7,

(11)
and taking into account the real analytic diffeomor-
phisms (6), the statement is obvious.

Proposition 4 enables us to state (without
proof) the following results:

Proposition 5. Out of the symmetries (10),
only three are independent.

Theorem 2. The set Gpol = {I}∪{Spol
i | i =

1, 7}, endowed with the composition law ”◦ ”, forms
a symmetric, commutative group.

Corollary 2. The group Gpol is endowed with
a Boolean structure. 3
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4. SYMMETRIES IN COLLISION-BLOW-
-UP COORDINATES

Let us return to the nonregular vector field
(9). Under the next two steps in the sequence of
McGehee-type transformations, (7) and (8), it be-
comes (Paper I):

r′ = rx,

θ′ = y,

x′ = nx2/2 + y2 −
n∑

k=1

kakrn−k,

y′ = (n/2 − 1)xy,

(12)

where ′ = d/ds and we kept, by abuse, the same no-
tation for the new functions of the timelike variable
s.

Recall that, in this way, the collision singular-
ity at q = (0, 0) or r = 0 was blown up and replaced
by a manifold pasted on the phase space (Paper I).
The phase space extends smoothly to this manifold.

Perusing the regular equations of motion (12),
we can state

Theorem 3. The vector field (12), corre-
sponding to the phase space extended to the collision
boundary, holds the same symmetries as the vector
field (9).

Proof. Taking into account the symmetries
(10), let us define

S̃i(r, θ, x, y, s) = Spol
i (r, θ, ξ, η, t), i = 1, 7, (13)

Examining equations (12), and taking into account
(10), it is easy to verify their invariance to the trans-
formations (13).

Given the definition of the symmetries S̃i, i =
1, 7, the following result is immediate:

Proposition 6. Out of the seven symmetries
S̃i , only three are independent.

To end this section, we state its main result,
which was to be expected:

Theorem 4. The set G0 = {I} ∪ {S̃i | i =
1, 7}, endowed with the same composition law ”◦ ”
as the groups G and Gpol, forms a symmetric, com-
mutative group.

Proof. The analogy to the composition table
used in the proof of Theorem 1 is easy to establish
and check. The theorem is proved.

Corollary 3. The group G0 is endowed with
a Boolean structure.

Proof. As in the case of Corollary 1, it suffices
to examine the composition table corresponding to
G0; every element proves to be its own inverse.

5. SYMMETRIES IN INFINITY-BLOW-UP
COORDINATES

To tackle a somewhat opposite situation, in
Paper II was considered the escape case (r → ∞). To
make the infinity turn to a singularity, one resorted
to the McGehee-type transformation of the first kind
(McGehee 1973):

ρ = 1/r. (14)
To remove the singularity at ρ = 0, the follow-

ing McGehee-type transformation of the second kind
was used (McGehee 1974):

u = ρn/2x,

v = ρn/2y;
(15)

dτ = ρ−n/2ds. (16)
Under these transformations, which are all real ana-
lytic diffeomorphisms, too, the vector field (12) be-
comes

dρ/dτ = −ρu,

dθ/dτ = v,

du/dτ = v2 −
n∑

k=1

kakρk,

dv/dτ = −uv,

(17)

where we abused again the notation for the new func-
tions of the timelike variable τ .

Remark 2. By (14)−(16), we have blown up
the singularity at ρ = 0, and replaced it by a mani-
fold pasted on the phase space (Paper II). The phase
space extends smoothly to the infinity boundary.

Remark 3. Equations (12) and (17) describe
the same problem as (3) or (9), but in different time
scales. Each time scale difffers in turn from the
”physical” time t (compare (8) and (16)).

As in the case of (9) and (12), the equations
of motion (17) possess of special characteristics. We
can state

Theorem 5. The vector field (17), corre-
sponding to the phase space extended to the infin-
ity boundary, has the same symmetries as the vector
fields (9) and (12).

Proof. Let us define

Ŝi(ρ, θ, u, v, τ) = Si(r, θ, ξ, η, t), i = 1, 7, (18)

or, equivalently,
4
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Ŝi(ρ, θ, u, v, τ) = S̃i(r, θ, x, y, s), i = 1, 7, (19)

Examining equations (17), their invariance to the
transformations described by Ŝi, i = 1, 7, can be
easily checked.

Given the equivalent definitions of the sym-
metries Ŝi, and constructing the composition table
analogous to those corresponding to Si, Spol

i , and
S̃i, the following results are immediate:

Proposition 7. Out of the seven symmetries
Ŝi, only three are independent.

Theorem 6. The set G∞ = {I} ∪ {Ŝi | i =
1, 7}, endowed with the same composition law as the
groups G, Gpol, and G0, forms a symmetric, com-
mutative group.

Corollary 4. The group G∞ is endowed with
a Boolean structure.

6. SYMMETRIES IN LEVI-CIVITA
COORDINATES

In this study, to avoid singularities, we re-
sorted to McGehee-type transformations. But there
is a lot of equations of motion-regularizing transfor-
mations we could use. In this section, just to com-
pare the results as regards symmetries, we shall ap-
ply Levi-Civita’s (1903) transformations − based on
Euler’s (1767) regularization − to the motion equa-
tions (9) (see also Aarseth and Zare 1974; Zare 1974;
Şelaru 1997a,b).

Let us apply the first step of Levi-Civita’s tra-
nsformations

r = z2,

ṙ = w/z,

θ̇ = ϕ

(20)

to the vector field (9). This becomes

ż = w/(2z2),

θ̇ = ϕ,

ẇ = w2/(2z3) + z3ϕ2 −
n∑

k=1

kak/z2k+1,

ϕ̇ = −2wϕ/z3.

(21)

For the second step, the change of the dynam-
ical variable

dσ = z−2n−1dt (22)

makes the vector field (21) turn to

dz/dσ = wz2n−1/2,

dθ/dσ = ϕz2n+1,

dw/dσ = w2z2n−2/2 + ϕ2z2n+4 −
n∑

k=1

kak/z2n−2k,

dϕ/dσ = −2wϕz2n−2,
(23)

where we maintained, by abuse, the same notation
for the new functions of the timelike variable σ.

Remark 4. Keeping in view the expression of
the potential (Paper I), the case n = 1 represents a
limit, physically concretized by the Newtonian-type
potential, characterized by an inverse-square inter-
action law. (If a1 > 0, the interaction is attractive,
generalizing Newton’s law. If a1 < 0, the interaction
is repulsive, as in the radiative case. If a1 = 0, we are
in the degenerate case of the force-free field, mainly
created by a balance of opposite forces.) In this case
(n = 1), equations (23) reduce to

dz/dσ = wz/2,

dθ/dσ = ϕz3,

dw/dσ = w2/2 + ϕ2z6 − a1,

dϕ/dσ = −2wϕ.

(24)

Equations (23) also holds remarkable proper-
ties as regards symmetries. Examining them, we can
state

Proposition 8. The vector field (23) has fif-
teen symmetries, as follows

S̄1(z, θ, w, ϕ, σ) = (z, θ,−w,−ϕ,−σ);

S̄2(z, θ, w, ϕ, σ) = (z,−θ, w,−ϕ, σ);

S̄3(z, θ, w, ϕ, σ) = (z, π − θ, w,−ϕ, σ);

S̄4(z, θ, w, ϕ, σ) = (−z, θ,−w, ϕ,−σ);

S̄5(z, θ, w, ϕ, σ) = (z, θ,−w, ϕ,−σ);

S̄6(z, θ, w, ϕ, σ) = (z, π − θ,−w, ϕ,−σ);

S̄7(z, θ, w, ϕ, σ) = (−z, θ, w,−ϕ, σ);

S̄8(z, θ, w, ϕ, σ) = (z, π + θ, w, ϕ, σ);

S̄9(z, θ, w, ϕ, σ) = (−z,−θ,−w,−ϕ,−σ);

S̄10(z, θ, w, ϕ, σ) = (−z, π − θ,−w,−ϕ,−σ);

S̄11(z, θ, w, ϕ, σ) = (z, π + θ,−w,−ϕ,−σ);

S̄12(z, θ, w, ϕ, σ) = (−z,−θ, w, ϕ, σ);

S̄13(z, θ, w, ϕ, σ) = (−z, π − θ, w, ϕ, σ);

S̄14(z, θ, w, ϕ, σ) = (−z, π + θ,−w, ϕ,−σ);

S̄15(z, θ, w, ϕ, σ) = (−z, π + θ, w,−ϕ, σ).

(25)

Proof. The invariance of equations (23) to
these transformations can be immediately verified.
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Remark 5. Obviously, the Kepler-type vec-
tor field (24) (associated with the Newtonian poten-
tial) holds the same symmetries.

Proposition 9. Out of the fifteen symme-
tries, only four are independent.

Proof. Consider, for instance, that the four
mutually independent symmetries are S̄1, S̄2, S̄3, S̄4.
It is easy to show that

S̄5 = S̄1 ◦ S̄2,

S̄6 = S̄1 ◦ S̄3,

S̄7 = S̄1 ◦ S̄4,

S̄8 = S̄2 ◦ S̄3,

S̄9 = S̄2 ◦ S̄4,

S̄10 = S̄3 ◦ S̄4,

S̄11 = S̄1 ◦ S̄2 ◦ S̄3,

S̄12 = S̄1 ◦ S̄2 ◦ S̄4,

S̄13 = S̄1 ◦ S̄3 ◦ S̄4,

S̄14 = S̄2 ◦ S̄3 ◦ S̄4,

S̄15 = S̄1 ◦ S̄2 ◦ S̄3 ◦ S̄4.

(26)

As we can easily check, choosing arbitrarily four dif-
ferent symmetries in S̄i | i = 1, 15, and considering
them as independent one of another, the above struc-
ture is confirmed. The proposition is proved.

Theorem 7. The set GLC = {I} ∪ {S̄i | i =
1, 15} (I being the identity again), endowed with the
composition law ”◦”, form a symmetric, commuta-
tive group.

Proof. Perusing the transformations S̄i, i =
1, 15, and taking into account Proposition 9, the fol-
lowing composition table is easy to construct.




◦ I S̄1 S̄2 S̄3 S̄4 S̄5 S̄6 S̄7 S̄8 S̄9 S̄10 S̄11 S̄12 S̄13 S̄14 S̄15

I I S̄1 S̄2 S̄3 S̄4 S̄5 S̄6 S̄7 S̄8 S̄9 S̄10 S̄11 S̄12 S̄13 S̄14 S̄15

S̄1 S̄1 I S̄5 S̄6 S̄7 S̄2 S̄3 S̄4 S̄11 S̄12 S̄13 S̄8 S̄9 S̄10 S̄15 S̄14

S̄2 S̄2 S̄5 I S̄8 S̄9 S̄1 S̄11 S̄12 S̄3 S̄4 S̄14 S̄6 S̄7 S̄15 S̄10 S̄13

S̄3 S̄3 S̄6 S̄8 I S̄10 S̄11 S̄1 S̄13 S̄2 S̄14 S̄4 S̄5 S̄15 S̄7 S̄9 S̄12

S̄4 S̄4 S̄7 S̄9 S̄10 I S̄12 S̄13 S̄1 S̄14 S̄2 S̄3 S̄15 S̄5 S̄6 S̄8 S̄11

S̄5 S̄5 S̄2 S̄1 S̄11 S̄12 I S̄8 S̄9 S̄6 S̄7 S̄15 S̄3 S̄4 S̄14 S̄13 S̄10

S̄6 S̄6 S̄3 S̄11 S̄1 S̄13 S̄8 I S̄10 S̄5 S̄15 S̄7 S̄2 S̄14 S̄4 S̄12 S̄9

S̄7 S̄7 S̄4 S̄12 S̄13 S̄1 S̄9 S̄10 I S̄15 S̄5 S̄6 S̄14 S̄2 S̄3 S̄11 S̄8

S̄8 S̄8 S̄11 S̄3 S̄2 S̄14 S̄6 S̄5 S̄15 I S̄10 S̄9 S̄1 S̄13 S̄12 S̄4 S̄7

S̄9 S̄9 S̄12 S̄4 S̄14 S̄2 S̄7 S̄15 S̄5 S̄10 I S̄8 S̄13 S̄1 S̄11 S̄3 S̄6

S̄10 S̄10 S̄13 S̄14 S̄4 S̄3 S̄15 S̄7 S̄6 S̄9 S̄8 I S̄12 S̄11 S̄1 S̄2 S̄5

S̄11 S̄11 S̄8 S̄6 S̄5 S̄15 S̄3 S̄2 S̄14 S̄1 S̄13 S̄12 I S̄10 S̄9 S̄7 S̄4

S̄12 S̄12 S̄9 S̄7 S̄15 S̄5 S̄4 S̄14 S̄2 S̄13 S̄1 S̄11 S̄10 I S̄8 S̄6 S̄3

S̄13 S̄13 S̄10 S̄15 S̄7 S̄6 S̄14 S̄4 S̄3 S̄12 S̄11 S̄1 S̄9 S̄8 I S̄5 S̄2

S̄14 S̄14 S̄15 S̄10 S̄9 S̄8 S̄13 S̄12 S̄11 S̄4 S̄3 S̄2 S̄7 S̄6 S̄5 I S̄1

S̄15 S̄15 S̄14 S̄13 S̄12 S̄11 S̄10 S̄9 S̄8 S̄7 S̄6 S̄5 S̄4 S̄3 S̄2 S̄1 I
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This proves the theorem.
Corollary 5. The group GLC is endowed with

the Boolean structure.

Proof. As in the cases presented in the pre-
vious sections, the composition table points out the
fact that every element of GLC is its own inversion
with respect to the composition law of the group.

7. CONCLUDING REMARKS

Examining what we have pointed out in this
paper, we can formulate

Theorem 8. The groups of symmetries G,
Gpol , G0, G∞ are diffeomorphic.

Proof. The transformations we used to pass
from one of the above groups to another being all real
analytic diffeomorphisms, the theorem is proved.

Remark 6. In spite of the above equivalence,
G0 and G∞ are formally more general. They also
cover the limiting situations of collision/ejection and
escape/capture, respectively. On the other hand, G
and Gpol are closer to a physical description of the
motion, due to the use of natural (Cartesian or polar)
coordinates and of the physical time.

Remark 7. Comparing the symmetries Si,
Spol

i (i = 1, 3) with the symmetries S̄i (i = 1, 3), it is
clear that they have the same physical significance,
respectively.

The symmetries pointed out in this paper are
of much help in understanding various properties of
the global flow of both the general problem or a con-
crete problem at hand. Indeed, for each solution
proved to exist, they show the existence of many
other solutions. Moreover, these symmetries are very
useful to find symmetric periodic orbits − especially
by means of the continuation method − in perturbed
problems depending on a small parameter ε such that
for ε = 0 we recover the unperturbed problem. Such
questions will be treated elsewhere.
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Dat je osvrt na problem dvaju tela u
vezi sa poǉem sile opisanim potencijalom ob-
lika U =

∑n
k=1 ak/rk (r = rastojaǌe izme�u

qestica, ak = realni parametri) sa samo je-
dnog stanovixta simetrija. Takve simetrije,
izra�ene u Hamiltonovim koordinatama, ili
u standardnim polarnim koordinatama, daju
se rekurentno za koordinate MekGijevog tipa

obe vrste – sudar-eksplozija i beskonaqnost-
eksplozija. One obrazuju difeomorfne komu-
tativne grupe sa bulovskom strukturom. Iz-
ra�en u koordinatama Levi-Civita problem
pokazuje veliku grupu simetrija koje su tako-
�e komutativne i predstavǉaju bulovsku stru-
kturu.
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