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SUMMARY: A spherically symmetric mass distribution with two scale parame-
ters for the dark corona of a (spiral) galaxy as an alternative to the usually applied
quasi-isothermal sphere is considered. Examinations of the rotation curve produced
by this distribution over a limited interval of the distance to the rotation axis show
that it can be a successful alternative to the usual approximation of the quasi-
isothermal sphere. This is important taking into account that the potential formula
considered in the present paper can be easily generalised towards axial symmetry.

1. INTRODUCTION

In an earlier paper of the present author (Nin-
kovié, 1999) the contribution of the dark-matter sub-
system (dark corona) to the rotation curve of a spiral
galaxy was studied. As its main result one can state
that a model usually known as the quasi-isothermal
sphere (in the further text QIS) offers the most sat-
isfactory fit for the case of almost constant circular
velocity. However, as indicated in that paper, the
potential formula involved by in the QIS model is
not particularly suitable for use, especially when the
possible flattening of the dark corona is taken into
account (e. g. Ninkovié et al., 1999). For this reason
in these two earlier papers alternative mass distribu-
tions in the form of the Schuster density law (the for-
mer paper), resp. the Miyamoto-Nagai potential for-
mula (the latter one), were applied. However, other
alternatives to the QIS model also deserve attention,
especially when the possibility of a cuspy mass dis-
tribution within the dark corona is borne in mind (e.
g. Dehnen and Binney, 1998), as well as the corre-
sponding formula yielding a ”flattened” potential in
conformity with, for example, Miyamoto and Nagai
(1975) for the case of the Schuster potential.

2. THE APPROACH

As on alternative model in this paper will be
used the so-called generalised isochrone one (e. g.
Kuzmin and Veltmann, 1973). For the gravitational
potential it yields the following formula

ho oM 0

a+ (r2+b2)1/2

Here G is the gravitation constant, M the total mass
of the system (in this particular case the corona), r
is the distance to the centre, whereas a and b are
two scale parameters. As already shown (Ninkovié,
1998), when the scale parameter b is much smaller
than a, then this potential becomes similar to the
cuspy one proposed by Hernquist, whereas if a = 0,
it is reduced to the potential corresponding to the
Schuster density law.

On the other hand, with regard to r? = R? +
22, where R is the distance to the rotation axis and
|z| is the one to the main plane, it is not difficult to
conceive the transformation of potential given by Eq.
(1) into the corresponding ”flattened” form by intro-
ducing a third scale length in analogy by Miyamoto
and Nagai as already said in Introduction.
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3. PROCEDURE AND RESULTS

The contribution of the dark corona to the
circular velocity of a spiral galaxy is calculated by
two different formulae: that of the QIS model and
that corresponding to Eq. (1). In view of the results
obtained in Ninkovié (1999) the QIS model might be
assumed as ”true” mass distribution within a dark
corona. Then, the aim is to achieve a fit as good
as possible. The circumstance of three parameters
present in Eq. (1) may mean that their values should
be combined in various, arbitrary, ways. However, in
this problem there are, some specific requirements.
For example, there are some constraints to the total
mass of the corona indicated by, say, the data on the
motion of the satellites of the galaxy under study.
Therefore, it seems reasonable to fix the total mass
first and then to carry out the fitting procedure with
the two scale parameters.

As already said, the Hernquist and Schuster
distributions are special cases of Eq. (1). Therefore,
the first attempts of fitting a given rotation curve
based on the QIS model, for fixed total mass of the
corona, could be effected with either of these two
models. The corresponding expressions for the cir-
cular velocity are equated to the given values (based
on the QIS model) and since the total mass is fixed,
there is only one remaining parameter (a or b - Eq.
(1)). This equating yields, of course, at each point
different parameter value. The final step is to calcu-
late the mean value. With the parameter value ob-
tained in this way and the already fixed total mass it
is possible to calculate the circular velocities for both
special cases (Hernquist and Schuster) and to com-
pare to the values corresponding to the QIS model
at the same points. Then the fitting quality will be
indicated by the average absolute difference.

This can be more clearly seen from the follow-
ing numerical example. As a reasonable value for the
total mass of the corona the one of 1000 GM, is as-
sumed. Such an amount seems justified if the usual
ones associated with the subsystems in giant galax-
ies are borne in mind. As the interval within which
the fitting is to be examined that of 0 < R < 30
(distance unit kpc) is chosen. It is clear that nor-
mally the rotation curve of a galaxy is studied closer
to the centre and it is well known that at very dis-
tant points (say exceeding 30 kpc) such studies can
hardly be done. A typical curve resulting from the
QIS model is fitted. The application of the Hern-
quist special case yields a value of 54.61 kpc for the
parameter where the circular velocities on the aver-
age differ by 24.64 km s~!. On the other hand,
when the Schuster special case is applied, the cor-
responding values are 34.14 kpc, resp. 11.86 km
g1

As well known, in the case of applying the QIS
model the total mass is concentrated within a finite
radius, unlike that of Eq. (1) where it is concentrated
within an infinite one. This should be borne in mind.
Therefore, an extrapolation towards higher values of
R is desirable. With the parameter values used here
for the QIS case the total mass of 1000 GMg yields
a value of 94 kpc for the limiting radius. An ex-
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trapolation towards 90 kpc yields the following: if
the Hernquist special case with the value a = 54.61
kpc is applied, then the circular-velocity values dif-
fer on the average by 50.97 km s~!; otherwise, for
the Schuster special case, by retaining the parameter
value, i. e. 34.14 kpc, the corresponding average dif-
ference will be 14.44 km s~!. It should be said that
in the case of the QIS model, the potential after the
limiting radius becomes that of point mass immedi-
ately, whereas for Eq. (1) it gradually approaches the
point-mass case. Due to this at high distances, say
greater than 100 kpc, one can expect a sufficiently
satisfactory agreement. Therefore, a general conclu-
sion of this part of the present paper may be that
the Schuster special case (a = 0 - Eq. (1)) yields a
better fit and, hence, it should be used as the first
approximation. A value of the parameter a different
from zero would be introduced as the next step only,
for the purpose of improving the fit. Such a proce-
dure leads to reducing of the average difference from
11.86 km s7! (a =0, b =34.14) t0 10.3 km s~ for
a = 2.6 kpc, b remaining the same. After extrapo-
lating Eq. (1) using these two values towards 90 kpc
the average difference becomes 11.2 km s~!. In ad-
dition, the velocity values for, for example, the QIS
curve are largely above 100 km s~! which means
that the mentioned average discrepancy is less than
10%. Thus, one may say that model implied by Eq.
(1) with all advantages mentioned above, can yield
a satisfactory fit of a given rotation curve for a spi-
ral galaxy, more precisely of the contibution to its
rotation curve by the dark corona, i. e. at least
practically equally good as that offered by the use of
the popular QIS model.
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Fig. 1. A given circular-velocity curve (solid line)
based on QIS model - central density p(0) = 0.0l Mg
pc~3, scale parameter equal to 10 kpc - juxtaposed
with that based on FEq. (1) (dashed curve) where
the values are: total mass 1000 GMg, scale lengths
a = 2.6 kpc, b = 34.14 kpc; velocity unit km s~1,
distance unit kpc.
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The case considered here is illustrated in Fig.

4. DISCUSSION AND CONCLUSIONS

It appears that the application of the gener-
alised isochrone potential (Eq. (1)) can be useful for
obtaining the contribution to the rotation curve of a
(spiral) galaxy’s dark corona. The circumstance that
it is very desirable to specify the total mass of this
corona first and only then to estimate the scale pa-
rameters, is not of importance. Normally, one stud-
ies a real galaxy, which means that, firstly, its obser-
vational rotation curve is known and secondly both
the contributions of the observed subsystems (e. g.
bulge, disc, etc.) and the total mass of the galaxy
as a whole can be estimated independently. Thus in
such a case at one’s disposal would be the ”"remain-
ing” rotation curve, i. e. the contribution of the
corona with its total mass estimated. On the basis
of the results obtained here it is clear that this "re-
maining” curve can be successfully fitted with model
implied by Eq. (1). This model has some advantages
compared to the QIS one, for example. As already
said, unlike QIS where the density has a cut off, i.
e. discontinuity, here the density decreases gradually

and there is no need to specify a limiting radius. On
the other hand it can be easily generalised towards
axial symmetry. Therefore, if the objective is to of-
fer a model for the dark corona of a (spiral) galaxy
yielding the gravitational potential analytically with
the possibility of its rather simple generalisation to-
wards axial symmetry, this objective, in the present
author’s opinion, is largely achieved here.
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JEIJAH AJITEPHATMBHU MOIEJI MACE 3A TAMHE KOPOHE TAJIAKCHMJA
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Opuzurasnu Hay¥Hy Pao

Pasmarpa ce jemma chepHO cumerpmduHA
pacmozena Mace ca JBe KOHCTAHTe AUMEH3Uje Iy-
JKUHE 33 TaMHY KODOHY jemHe (cmupadjHe) rajak-
cHuje Kao aJTepHATUBa yOOMUajeHO NpUMEHUBa-
HOj KBa3u-u3oTepMHO] chepu. VcnurtuBama Kpu-

Be poTalyje Koja IIOTU4YE OJ OBE pacHoAese Ha
OrpaHNYEHOM MHTEPBAJIY PACTOjama 0 OCE POTa-

nuje MOKa3yjy ma OHa MOKe OUTU yCIEeNHa aJTep-
HATUBA yoOWYajeHOo] AmpOKCUMAINUjU KBA3U-U30-
tepmue cepe. OBo je 3HAUAjHO ¢ 0O3UpPOM Ha
ce ¢opmyia 3a HOTEHIMjaJ Pa3MaTpPaHa y OBOM

pamy MOsKe JaKO YOIIITUTU Ha Ccjaydaj oOpTHE
cuMeTpuje.



