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SUMMARY: Presented is a model with the mass equal to one solar mass, the
abundance of the hydrogen X = 0.628, the abundance of the helium Y = 0.325 and
the abundance of the metals Z = 0.047. This model corresponds to the young stars
belonging to the Population I.

1. PRESENTATION OF THE PROBLEM

We consider a model of a star having a ra-
diative nucleus and a convective cover. Solving the
problem integration must be performed both from
centre and from surface and the solutions thus ob-
tained have to be connected, so that the continuity
of the considered parameters should be ensured. To
give a model of the interior of a star means to deter-
mine the variations of pressure, temperature, mass
and luminosity along the ray. The following equa-
tions of hydrostatic equilibrium, mass distributions,
luminosity and temperature are valid for the radia-
tive nucleus(see, e.g., Menzel and others, 1963; Aller
and McLaughlin, 1965; Cox and Giuli, 1968):

dP (r)/dr = (−GM(r)/r2)ρ(r),

dM(r)/dr = 4πr2ρ(r),

dL(r)/dr = 4πr2ρ(r)ε(r)

dT (r)/dr = (−3/4ac) · (κ(r)ρ(r)/T 3(r))·
(L(r)/4πr2)

(1)

ρ(r) is the density at the distance r from the cen-
tre, ε(ρ(r), T (r), X, Y ) is the energy generation per

gram per second, κ(ρ(r), T (r), X, Y ) is the opacity
corresponding for the mass unity, and X, Y are the
fractions of hydrogen and helium. The system (1)
has the following boundary conditions in the centre
of the star:

M(0) = 0,

L(0) = 0,

P (0) = Pc =?,

T (0) = Tc =? at r = 0

(2)

The law of the gas P (r) = (1/µ)(k/H)ρ(r)
T (r) is valid for the whole interior.

The hydrostatic equilibrium equation as well
as the mass distribution and the adiabatic equations
(Menzel et al., 1963):

dP (r)/dr = (−GM(r)/r2)ρ(r),

dM(r)/dr = 4πr2ρ(r),

P (r) = Kρ(r)5/3 or P (r) = K1T
2.5(r)

(3)

are valid for the whole convective zone.
The system (3) has the following boundary

conditions at the star surface:

41



E. TATOMIR

M = M0,

L = L0,

T = 0,

P = 0 at r = R0

(4)

Schwarzschild’s transformations are applied to the
systems (1) and (3) (Schwarzschild, 1958):

P (r) = pGM2/(4πR4),

T (r) = t(µH/k)(GM/R),

M(r) = qM,

L(r) = fL and r = R · x

(5)

where henceforth p, t, q, x, f are dimensionless vari-
ables. To produce the energy we consider the follow-
ing formula:

ε = ε0ρ(r)T 4.5(r) where ε0 = 2.8 · 10−33X2 (6)

and for opacity:

κ = κ0ρ
0.75(r)T−3.5(r) where

κ0 = 6.52 · 1024(Z + (X + Y )/59.3)(1 + X)0.75

(7)
Using Schwarzschild’s transformations and the laws
(6) and (7) in the systems (1) and (3), they become:

dp/dx = −pq/(tx2),

dq/dx = px2/t,

df/dx = Dp2x2t2.5,

dt/dx = −C(p1.75f)/(x2t8.25)

(8)

respectively

dp/dx = −pq/(tx2),

dq/dx = px2/t and p = Et2.5
(9)

where

E = 4πK1(H/k)2.5G1.5M0.5R1.5µ2.5

C = (3κ0/(4ac))(1/(4π)2.75) (k/(HG))7.5

(LR1.25/(M5.75µ7.5))

D = (ε0/4)(GH/k)4.5(M6.5/(LR7.5))µ4.5

(10)

The boundary conditions become as follows:

at the centre: x = 0, f = 0, q = 0, t =?, p =?

and at the surface: x = 1, f = 1, q = 1, t = 0,

p = 0.
(11)

If we start the integration of the system (8), we ob-
tain two infinite assemblies of solutions for the nu-
cleus, due to the possibility of choosing the values of
pressure and temperature in the center. We perform

another variable transformation, which will remove
an infinite assembly of solutions for the radiative nu-
cleus.

We consider:

x = x0x
∗ and t = t0t

∗,

f = f0f
∗,

p = p0p
∗ and q = q0q

∗
(12)

where x0, t0, f0, p0, q0 are indefinite constants. We
impose the following form to the system (8):

dp∗/dx∗ = −p∗q∗/(t∗x∗2
),

dq∗/dx∗ = p∗x∗2/t∗,

df∗/dx∗ = p∗2x∗2t∗2.5,

dt∗/dx∗ = −p∗1.75f∗/(t∗8.25x∗2)

(13)

and thus x0, t0, p0, f0, q0, C, D verify the system
(14):

q0/(t0x0) = 1

p0x
3
0/(t0q0) = 1,

C p1.75
0 f0/(t9.25

0 x0) = 1,

D p2
0t

2.5
0 x3

0/f0 = 1.

(14)

If we consider an already known chemical composi-
tion, we may calculate the value of C and D, but
besides them the system (14) contains five unknown
quantities, so one of them may be chosen. We have
chosen t0 = tc, so t∗c = 1.

Both the system (9) and the system (13) pre-
sent singularities in the points where the boundary
conditions are given. A difficult problem, the one of
connecting the solutions should be elucidated. We
have to ensure the continuity of the parameters P (r),
T (r), M(r) and L(r). Three new parameters are
introduced by the relations:

U = d logM(r)/(d logr),

V = −d logP (r)/(d logr),

(n + 1) = d logP (r)/(d logT (r)).

(15)

We perform the calculations in (15) and obtain:

U = 4πr3ρ(r)/M(r) = px3/(qt) = p∗x∗3
/(q∗t∗),

V = (ρ(r)/P (r)) · (GM(r)/r) = q/(tx) =

q∗/(t∗x∗),
(16)

and (n + 1) form corresponding to the radiative nu-
cleus will become:

(n+1)rad =(16πac/3)(GM(r)T (r)4/(P (r)κ(r)L(r)))

= (1/C)(qt8.25/fp1,75) = q∗t∗8.25/(f∗p∗1.75)
(17)

We obtain (n+1) form corresponding to the convec-
tive zone and we get:
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(n + 1)conv = 2.5 (18)
Pressure and temperature being continuous functi-
ons, (n + 1) should be a continuous function too.
The convective zone begins in the point x∗ where
(n + 1) = 2.5. Starting with a certain value for
p∗c , within the plane (U, V ) we obtain a correspond-
ing curve having a final corresponding value (Ui,Vi)
where the radiative zone ceases to exist. Starting
with a certain E we can integrate system (9) and
plot the corresponding curve in the plane (U, V ). But
the continuity of the functions corresponding to mass
and pressure requires a continuous curve in the plane
(U, V ). Thus, if we choose a certain E, then we may
choose a value for p∗c so that the continuity within
the plan (U, V ) should be obtained, but we may con-
sider the problem the other way round as well, that
is to start by choosing p∗c and then to interpolate as
against E.

We suppose that a connection of a certain E
and a p∗c has been achieved. Then we determine the
constants x0, p0, f0, q0, t0, C and D. The assump-
tion that a connection has been achieved gives us the
value of the parameters q, p, f , t at the overlaping
both from surface and from centre, thus we know:
xis, qis, tis, pis and xic, pic, tic, fic, qic and, as there
is no energy produced within the convective zone; it
follows fis = 1, where ”is” indicates that there is a
value at the overlaping considered from surface, and
”ic” indicates that there is a value of a parameter,
considered from centre. Using (12), we have:

xis = x0x
∗
ic and pis = p0p

∗
ic, fis = 1 = f0f

∗
ic,

qis = q0q
∗
ic and tis = t0t

∗
ic

(19)

which give us the values x0, f0, t0, q0. The system
(14) gives us the values of C and D. We suppose that
the values of C and D are calculated for a certain E
and p∗c for which a connection of the solutions has
been achieved. Using the formulae of C and D given
by (10), where M , R, L which stand for mass, ray,
luminosity corresponding to the Sun at the present
time, are considered as known data and testing with
different chemical compositions we try to obtain val-
ues for C and D, equal to those resulting from the
calculation. Thus, once the calculus achieved, that is
a chemical composition which has been determined,
it should be reconsidered until there is obtained a
chemical composition as close as possible to the one
determined in spectroscopy.

The formulae (1) - (19) are given in Menzel
(1963).

2. THE PROBLEM SOLVED
NUMERICALLY

System (13) has the following limit conditions:

x∗ = 0, f∗ = 0, q∗ = 0, t∗ = 1 and p∗ chosen (20)

This system has a singularity in x∗ = 0, but system
(13) admits solutions in an analytic form for each

and every neighbourhood of this singularity point.
These analytic solutions are prolonged by continu-
ity in the point x∗ = 0 as well. We note p∗c = p0,
considering the

∑
anxn solutions and imposing the

condition that these series should verify (13), we ob-
tain:

p(x) =p0 − (1/6)p2
0x

2 + (1/45)(p3
0 − p5.75

0 )x4+

0x5 + A6x
6 + ...

q(x) =(1/3)p0x
3 + (1/30)(p4.75

0 − p2
0)x

5+

0x6 + B7x
7 + ...

f(x) =(1/3)p2
0x

3 − ((1/15)p3
0 + (1/12)p5.75

0 )x5+

0x6 + C7x
7 + ...

t(x) =1 − (1/6)p3.75
0 x2 + ((59/1440)p4.75

0 −
(3/32)p7.5

0 )x4 + 0x5 + D6x
6 + ...

(21)
The series (21) will help us in calculating the values
of the solutions in four points contiguous to the ori-
gin and to the integration pass h = 0.01. In order
to obtain the value of the solutions in the following
points, we use Adams-Bashforth’s extrapolation for-
mula of the forth order:

Vk+1 =Vk + h[(55/24)fk − (59/24)fk−1+

(37/24)fk−2 − (9/24)fk−3]
(22)

which allows us to calculate the solution in a certain
point, if we know the values in four previous points.

Adams-Moulton’s interpolation formula:

Vk+1 = Vk + h[b−1fk+1 + ... + b3fk−3] (23)

contains the solution Vk+1 within the right term in
the item fk+1. From (22) we obtain a Vk+1

(0) which
substituted in (23) gives the possibility of obtain-
ing Vk+1

(1). We apply the successive approximations
method and we obtain:

Vk+1
(n+1) = Vk + (251/720)hf(tk+1, Vk+1

(n))+

h[(646/720)fk − (264/720)fk−1+

(106/720)fk−2 − (19/720)fk−3]
(24)

The process of approximation continues until∣
∣
∣Vk+1

(n+1) − Vk+1
(n)

∣
∣
∣ < 10−11. The system (9) will

be integrated under the following condition: for x =
1, p = t = 0, q = 1, E chosen. We perform the
variable y = 1 − x, we denote the variable by x as
well, and thus the system (9) becomes:

dp/dx = pq/(t(1 − x)2),

dq/dx = −p(1 − x)2/t,

dt/dx = (1/2.5E) pq/(t2.5(1 − x)2)

(25)

It has a singularity in the point x = 0 because of t.
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We still use the
∑

An(1 − x)n series method,
and we obtain out of (25):

p(x) = (E/(2.5)2.5)(1 − x)2.5 + ...

q(x) = 1 − (E/(2.5)2.5)(1 − x)2.5 + ...

t(x) = (1/2.5)(1−x)+(14E/(4+25E))(1−x)2+...
(26)

We use (26) in calculating the value of the so-
lutions in one single point contiguous to 1. In order
to calculate the values of the solutions in the follow-
ing three points, we use Runge-Kutta’s method for
non-autonomous systems:

Vk+1 = Vk+h[(1/6)l1+(1/3)l2+(1/3)l3+(1/6)l4)

l1 = f(tk, Vk) andl2 = f(tk + (h/2), Vk + (h/2)l1)

l3 = f(tk + (h/2), Vk + (h/2)l2)

l4 = f(tk + h, Vk + hl3), h = tk+1 − tk = 10−3

(27)
Thus, we obtain the values of the solutions

in four points, which allows us to continue with the

predictor-corrector method. The formulae (22)-(24)
appear in Moszynski (1973).

3. RESULTS AND CONCLUSIONS

As we have already stated in the first chapter,
we choose a p∗c and perform the interpolation con-
sidering different values of E until we obtain a con-
nection within the plane (U, V ), and with the help
of the values C and D resulting from the calculus,
we determine the chemical composition. The whole
calculus is repeated by choosing another pc* and ob-
taining a new model until the corresponding chem-
ical composition is as close as possible to the one
obtained spectroscopically. The obtained results are
presented in Table 1.

In this Table the pressure (P ) is expressed in
units of 1018 dyne/cm2, the temperature (T ) in units
of 106 K, the density ρ in gr/cm3, q is the reduced
mass and f is the reduced luminosity. After the con-
nection of the solution of the radiative nucleus to
the one of the convective zone the following values
are obtained:

Table 1.
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p∗c = 0.68051331817

E = 0.92

X = 0.628,

Y = 0.325,

Z = 0.047

Schwarzschild obtained for the solar model ha-
ving the chemical composition of:

X = 0.60, Y = 0.344, Z = 0.056

the following values:

E=1.02, xi =0.887, qi =0.9997, Ti =0.8 · 106 K,

Tc = 15 · 106 K, ρc = 87 g/cm3

and in the present paper I obtained:

X = 0.628, Y = 0.325, Z = 0.047

the following values:

E=0.92, xi =0.8956, qi =0.9996, Ti =0.811·106 K,

Tc = 14.9061 · 106 K, ρc = 90.8445 g/cm3.

The conclusion is that the results are similar
even if the way of solving is totally different.

At solving the system (13), using the bound-
ary conditions in the centre of the star (20) there
appear indeterminacy in the form of 0/0. I have pro-
posed the Taylor’s series

∑
anxn for the integration

of this system:

p(x) = p0 + A1x + A2x
2 + A3x

3 + ...

q(x) = B1x + B2x
2 + B3x

3 + ...

f(x) = C1x + C2x
2 + C3x

3 + ...

t(x) = 1 + D1x + D2x
2 + D3x

3 + ...

(28)

where p0 = p∗c , and I take x instead of x∗ for an
easier use. I have assumed that the pressure p(x), the
temperature t(x), the luminosity f(x) and the mass
q(x) are continuous functions and using the series
(28) in (13) I have obtained their expressions given
by (21).

Then I have showed the classical methods of
numeric integration used to solve such a system (the
formulae 22-24) using the successive approximations
up to

∣
∣
∣Vk+1

(n+1) − Vk+1
(n)

∣
∣
∣ < 10−11.

Schwarzschild used the logarithmic variables
for the system (13) transforming the indeterminacy
in the form of 0/0 in other indeterminacies in the
form of ∞/∞, and Sears used the mass m=M(r)/M
as independent variable.

When the boundary conditions at the surface
of the star are used:

x = 1,

f = 1,

q = 1,

t = 0,

p = 0

(29)

the system (9), which corresponds to the convective
cover, has also the indeterminacy in the form of 0/0.
Using the series of powers, I have obtained for the
convective cover the expressions (25) and (26) and I
have shown how the formulae (27) are used to con-
tinue the integration of the system (9). In conclusion
this way of mathematical and numerical approaching
permits obtaining any homogeneous stellar model,
which has a radiative nucleus and a convective cover.
The papers quoted in the text were consulted at the
writing of this paper. Other papers quoted in the
References are recommended to be read for a better
understanding of the studied theme.

The values of the constants which appear in
the paper are:

G = 6.672 · 10−8 cm3g−1s−1;

R = 6.96 · 1010 cm;

H = 1.6725 · 10−24 g;

M = 1.9891 · 1033 g;

k = 1.3805 · 10−16 erg/K;

µ = 4/(3 + 5X − Z);

a = 7.564 erg·cm−2deg−4;

c = 2.99792458 cm·s−1;

L = 3.12 · 1033 erg·s−1.
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HOMOGENI MODEL ZVEZDE QIJI JE HEMIJSKI SASTAV
X = 0.628 I Z = 0.047

E. Tatomir
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Originalni nauqni rad

Prikazan je model sa masom jednakom Su-
nqevoj masi, sa udelom vodonika X = 0.628,
udelom helijuma Y = 0.325 i udelom metala Z

= 0.047. Ovaj model odgovara mladim zvezdama
koje pripadaju Populaciji 1.
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