
Serb. Astron. J. � 161 (2000), 9 – 13 UDC 521.13
Original scientific paper

STABILITY OF THE RELATIVE EQUILIBRIA IN THE GENERALIZED

J2 PROBLEM

V. Mioc and M. Stavinschi

Astronomical Institute of the Romanian Academy
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SUMMARY: For a large class of concrete astronomical situations, the motion
of celestial bodies is modelled by dynamical systems associated to a potential func-
tion α/r + εU (r = distance between particles, α = real constant, ε = real small

parameter, U = perturbing potential). In this paper the nonlinear stability of the
relative equilibrium orbits corresponding to such a potential is being investigated
using a less usual method, which combines a block diagonalization technique with
the reduction procedure. The test points out certain nonlinearly stable orbits, and
is inconclusive for the remaining equilibria. The latter ones are treated via lin-
earization; all of them prove instability. The nonlinearly stable orbits remain stable
under any perturbation that preserves the conserved momentum.

1. INTRODUCTION

The orbital stability of heavenly bodies always
constituted one of the main problems of astronomy.
Starting from the natural question: is our planetary
system stable or not, then extending it to other bod-
ies of the solar system, a huge number of outstand-
ing scientists dedicated their efforts to contribute to
the understanding and solution of such a tremendous
problem. Some landmark names are sufficient: La-
grange, Laplace, Poisson, Maxwell, Haret, Poincaré,
Liapunov, Birkhoff, Kolmogorov, Arnold, Moser (for
a more complete list see, e.g., Pal 1991; Diacu and
Holmes 1996). To study this problem, the most var-
ious methods and techniques were used, belonging
mainly to celestial mechanics and - much more re-
cently - to the more general theory of dynamical sys-
tems.

The actual astronomical investigations on or-
bital stability focus on natural and artificial plan-

etary satellites, planetary rings, asteroids, comets,
stellar satellites (from planets to particles in sur-
rounding disks), binary stars of all kinds, accretion
disks around AGNs, stellar clusters, clusters of galax-
ies, and so forth. The class of astronomical situa-
tions that involve the study of dynamical stability
is mighty large. In such studies, one of the most
used models of force field is that featured by a po-
tential function α/r+εU , where α is a real constant,
ε is a small parameter, U is the perturbing potential,
while r stands for the distance between two particle
in this field. In other words, if α > 0 the associated
two-body problem is equivalent to the perturbed Ke-
pler problem in which the perturbation depends on
a small parameter.

In this paper we shall restrict the class of per-
turbing potentials to the (still very large) range that
leads to the so-called J2 problem (see below). At the
same time we relax the condition of perturbed Keple-
rian motion by letting the parameter α run all along
the real line. Finally, we deal with a single aspect
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(but very important) of the problem: the relative
equilibria.

To be more explicit, let us consider the gravi-
tational field generated by a celestial body that pre-
sents geometric and dynamical symmetry with re-
spect to an axis. In this case the potential is expand-
able in spherical functions, i.e. it can be expressed
by the sum of the Newtonian potential and the zonal
harmonics. The study of the motion in such a field,
when only the second zonal harmonic is taken into
account as perturbing factor, bears the name of J2
problem. It is also called the main problem of space
dynamics (e.g. Saari 1974; Belenkii 1981) because
such a model was first used to investigate the artifi-
cial satellite motion around the Earth approximated
by a rotation ellipsoid (the deviation from a sphere
being featured only by J2). If the motion of the
satellite body is confined to the equatorial plane (the
only case which admits equilibria), then the model
reduces to the two-body problem associated to a po-
tential function of the form α/r + β/r3, with r =
distance between bodies, and α, β = positive con-
stants.

Considering the more general case of the J2
problem in which the Newtonian-type force may be
attracting/zero/repelling (as α is positive/zero/ne-
gative, respectively), whereas the perturbative term
that contains J2 may be positive/zero/negative, al-
most all equilibria are found to lie in the equatorial
plane of the field-generating body. (There also is a
degenerate case: α = 0, J2 = 0, i.e. the force-free
field, which excepts from this situation.) So, we de-
fine the generalized J2 problem: the ”equatorial” J2

problem with α, β ∈ R, α2 + β2 �= 0, to which is
added (for completeness) the degenerate case of the
force-free field.

This model corresponds to a wide range of
concrete astronomical situations. To give some ex-
amples, the motion in the equatorial plane of an
oblate, rotating star is such a situation (here α can
be positive/zero/negative as the Newtonian gravi-
tational attraction is stronger than/equal to/weaker
than the repelling radiative force). If we consider
that the central body is a spherical or ellipsoidal
planet which also acts on the satellite body through
the pressure of the diffusely re-emitted radiation of
the ”landlord” star, the mathematical formalism is
identical. The motion around bodies that generate
Schwarzschild-type fields (radiation included or not)
also join this model (e.g. Stoica and Mioc 1997; Mioc
and Stavinschi 1998). Of course, particular cases of
the Coulombian field (e.g. Sommerfeld 1951; Be-
lenkii 1981) or well-known models, as the Newtonian
field, the purely radiative field, the classical pho-
togravitational field, or the already mentioned force-
free field, are recovered, too.

To study the nonlinear stability of steadily ro-
tating configurations of bodies (relative equilibria), a
very efficient tool is provided by a combination of the
block-diagonalization method proposed by Marsden
et al. (1989), and developed by Maddocks (1991) and
Simó et al. (1991), with the classical reduction proce-
dure. This technique, particularized by Zombro and

Holmes (1993) to systems with a finite number of de-
grees of freedom and with a single rotational symme-
try, was applied for instance to the study of the rel-
ative equilibrium configurations in the (n + 1)-body
problem; cf. Elmabsout (1988, 1990, 1994, 1996) and
the references therein.

We use this technique to reduce the Hamil-
tonian of the problem with a single cyclic coordi-
nate θ, restricting it in this way to the level set pθ

= constant, where pθ is the (conserved) momentum
conjugate to θ. The relative equilibria of the cor-
responding amended potential lie in the equatorial
plane of the field-generating body, except the above
mentioned degenerate situation.

Tackling the Liapunov nonlinear stability of
these equilibria, we find that the nonlinearly stable
cases remain stable for the whole class of perturba-
tions that do not affect the conserved momentum.
This means that the stable character of the equa-
torial circular orbits is preserved under the influence
of certain perturbations as, for instance, all other
zonal harmonics in the potential expansion, or the
diffusely re-emitted radiation pressure.

We also point out situations in which the non-
linear stability test is inconclusive. Applying the
classical linearization method to these cases, we ob-
tain that all corresponding equilibrium orbits (circu-
lar or rest points) are linearly unstable.

2. AMENDED POTENTIAL

We fix the origin of the coordinates in the mass
center of the field-generating body, and study the
relative motion with respect to it. The corresponding
equations of motion are

q̇ =
∂H(q,p)

∂p
, (1)

ṗ = −∂H(q,p)
∂q

,

where q = (q1, q2, q3) ∈ R3 \ {(0, 0, 0)} is the config-
uration vector, while p = (p1, p2, p3) ∈ R3 stands for
the momentum vector. The class of Hamiltonians we
deal with has the form (in suitably chosen units):

H(q,p) =
|p|2
2

− α

|q| − εU

(√
q2
1 + q2

2 , q3

)
, (2)

in which α, ε ∈ R, ε being a small parameter. It is
clear that the first two terms in the right-hand side of
(2) describe the unperturbed problem, whereas the
third term represents the perturbation.

We shall pass to cylindrical coordinates
(r, θ, z) and corresponding momenta (pr, pθ, pz) via
the transformations

(q1, q2, q3) = (r cos θ, r sin θ, z), (3)

(p1, p2, p3) = (pr cos θ− pθ

r
sin θ, pr sin θ+

pθ

r
cos θ, pz).

Let us observe that, under this change of variables,
the motion equations keep their canonical character
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(however, in the general case the canonical charac-
ter is lost). By virtue of (3), the Hamiltonian (2)
becomes

H =
1
2

(
p2

r + p2
z +

p2
θ

r2

)
− α√

r2 + z2
− εU(r, z), (4)

where we kept by abuse the same notation for the
Hamiltonian, as well as for the perturbing potential
as functions of the new variables introduced through
the transformations (3).

Notice that H does not depend on θ. This
means that the momentum conjugate to θ is con-
served. Therefore we may apply the reduction, con-
fining the Hamiltonian to the level set L := pθ =
constant.

According to Zombro and Holmes (1993), the
amended potential of (2) will have the expression

UL =
L2

2r2
− α√

r2 + z2
− εU(r, z). (5)

Considering that the perturbing potential is
expandable in spherical functions, we can write (e.g.
Brouwer and Clemence 1961)

εU(r, z) =
∑
n≥2

Jn(√
r2 + z2

)n+1 Pn

(
z√

r2 + z2

)
,

(6)
where Jn stands for the coefficient of the n-th zonal
harmonic, while Pn denotes the n-th order Legendre
polynomial. For n = 2, and denoting J := J2, (5)
becomes

V := UL(n = 2) =

=
L2

2r2
− α√

r2 + z2
− J

2(r2 + z2)3/2

[
3z2

r2 + z2
− 1

]
,

(7)
that corresponds to the generalized J2 problem (in
which α and J may take any real value). Observe
that the equatorial case (z = 0) is equivalent to the
so-called Schwarzschild problem (see Stoica and Mioc
1997).

3. RELATIVE EQUILIBRIA

Let us write the equations of motion in an ex-
plicit form. By virtue of (4), and taking into account
the reduction operated in the previous section, these
equations read

ṙ = pr,
ż = pz,

ṗr =
p2

θ

r3
− αr

(r2 + z2)3/2
+

3Jr(r2 − 4z2)
2(r2 + z2)7/2

, (8)

ṗz = − αz

(r2 + z2)3/2
+

3Jz(3r2 − 2z2)
2(r2 + z2)7/2

.

The relative equilibria (steadily rotating sta-
tes) correspond to θ̇ = constant (�= 0), pθ = L (�= 0),
and ṙ = 0 = ż, ṗr = 0 = ṗz. The relative rest

equilibria (also called nonrotating relative equilibria)
require the same conditions, but with θ̇ = 0, L = 0.

Proposition 3.1. The only situation that ad-
mits equilibria for z �= 0 is the degenerate case of the
force-free field (α = 0, J = 0). The corresponding
critical point is a relative rest equilibrium.

Proof. It is clear that for z = constant (�=
0) rotating relative equilibria cannot exist. Let us
suppose that there exist relative rest equilibria for
z = ze �= 0 and r = re > 0. Then, putting in (8)
pθ = L = 0, multiplying the third equation by −z,
the fourth equation by r, and adding the resulting
expressions (each being equal to zero) together, one
gets Jze = 0, which means either ze = 0, or J =
0. The first case leads to a contradiction (we have
supposed ze �= 0). In the latter situation, the last
two equations (8) imply α = 0. But α = 0, J = 0
mean force-free field.��

Proposition 3.2. For z = 0 (equatorial pla-
ne), the relative equilibria are given by

αr2 − L2r − 3J

2
= 0. (9)

Proof. It is clear from the fourth equation
(8) that ṗz = 0 for z = 0. Putting z = 0 in the
third equation (8) with ṗr = 0, formula (9) results
immediately.��

Now we are in the position to state

Proposition 3.3. The only relative (or rela-
tive rest) equilibria of the ”equatorial” generalized J2

problem have the following characteristics:
(i) α > 0, J > 0, L ∈ R:

re =
L2 +

√
L4 + 6αJ

2α
;

(ii) α > 0, J = 0, L ∈ R:

re =
L2

α
;

(iii) α > 0, J < 0, L2 =
√−6αJ :

re =
L2

2α
;

(iv) α > 0, J < 0, L2 >
√−6αJ :

re,1 =
L2 −√

L4 + 6αJ

2α
,

re,2 =
L2 +

√
L4 + 6αJ

2α
;

(v) α = 0, J < 0, L ∈ R:

re = − 3J

2L2
;
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(vi) α < 0, J < 0, L ∈ R:

re =
L2 −√

L4 + 6αJ

2α
.

Proof. It is obvious that the relative equilib-
ria are provided by the real, positive roots of equa-
tion (9). Solving this equation for the whole inter-
play among the field parameters α and J , and the
angular momentum L, we find only the above stated
situations.��

4. STABILITY OF THE RELATIVE
EQUILIBRIA

Taking into account the above hypotheses and
results, we are in the position to apply the algorithm
described by Zombro and Holmes (1993). This tech-
nique allows to formulate conclusions about the non-
linear stability of the relative equilibria via the ex-
amination of the positive definiteness of the matrix

D2V
∣∣
(r=re,z=0) =

[
∂2V/∂r2 ∂2V/∂r∂z
∂2V/∂r∂z ∂2V/∂z2

]
(r=re,z=0)

.

(10)
The nonlinear stability is entailed by the conditions

D1 :=
(
∂2V/∂r2

)
(r=re,z=0)

> 0;

D2 := det
(
D2V

∣∣
(r=re,z=0)

)
> 0. (11)

Taking into account (7) and (9), these conditions
read

D1 =
L2rk + 3J

r5
k

> 0;

D2 =
L2rk − 3J

r5
k

> 0, (12)

with re precised by Proposition 3.3.
In this context we can state the two theorems

below, which constitute the main result of this paper.

Theorem 4.1. The equilibrium solution cor-
responding to the case (i) is nonlinearly stable for
L2 >

√
2αJ . The equilibrium solutions correspond-

ing to the case (ii) and to the circular orbit of radius
re,2 of the case (iv) are nonlinearly stable. We can
say nothing about the nonlinear stability of the equi-
libria for the remaining cases.

Proof. In the case (i), we get D1 > 0 and
D2 > 0 for L2 >

√
2αJ (nonlinear stability), D2 ≤ 0

for L2 ≤ √
2αJ (inconclusive test). In the case (ii),

we have D1 > 0, D2 > 0 (nonlinear stability), as
well as for the case (iv) with re = re,2. For the case
(iii), D1 = 0 = D2, whereas for the cases (iv) with
re = re,1, (v), and (vi), we obtain D1 < 0, D2 < 0,
hence the nonlinear stability test is not conclusive.��

For the situations in which the above test fails,
we shall resort to linearization. In this case the fol-
lowing result can be stated:

Theorem 4.2. The equilibria corresponding
to the cases (i) with L2 ≤ √

2αJ , (iii), (iv) with
re = re,1, (v), and (vi) are linearly unstable.

Proof. For these cases, the linearized Hamil-
tonian at the critical point (r = re, z = 0) leads stra-
ightforwardly to the characteristic equation

λ4 + 2 (Dr + Dz)λ2 + 4DrDz = 0, (13)

where

2Dr =
(
∂2V/∂r2

)
(r=re,z=0)

=D1,

2Dz =
(
∂2V/∂z2

)
(r=re,z=0)

=D2/D1 (for D1 �= 0) .

(14)
It is easy to check that for the considered cases we
have at least one eigenvalue with nonnegative real
part; consequently these equilibria are unstable.��

Remark 4.3. It is obvious that the relative
rest equilibrium corresponding to the force-free field
is linearly unstable, too.

5. CONCLUSIONS

Summarizing, the generalized J2 problem ad-
mits eight families of equilibrium solutions, accord-
ing to the interplay among the field parameters α and
J , and the angular momentum L. For α > 0, J > 0,
the orbits are nonlinearly stable if L2 >

√
2αJ , and

unstable for L2 ≤ √
2αJ ; the bifurcation values are

obtained for L2 =
√

2αJ . For α > 0, J = 0, the
orbits are nonlinearly stable, whatever L is. For
α > 0, J < 0, we have a family of unstable equi-
librium orbits for L2 =

√−6αJ, and two families of
equilibrium orbits for L2 >

√−6αJ : the inner one,
at r = re,1 is unstable, whereas the outer one, at
r = re,2, is nonlinearly stable. For α = 0, J < 0, and
α < 0, J < 0, the relative equilibrium orbits are un-
stable. It is the same for the relative rest equilibrium
corresponding to the degenerate case α = 0, J = 0.

An important result concerning the nonlin-
early stable orbits can be stated as

Theorem 5.1. The circular orbits correspon-
ding to the cases (i) (for L2 >

√
2αJ), (ii), and (iv)

(for re = re,2) remain stable under the influence of
all other zonal harmonics of the potential.

Proof. The amended potential has in this
case the expression

UL = V −
∑
n≥3

Jn(√
r2 + z2

)n+1 Pn

(
z√

r2 + z2

)
.

(15)
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with z = 0. One sees that the perturbation pre-
serves the initial symmetry; the value of the mo-
mentum pθ (conjugate to the cyclic coordonate θ) is
conserved. But Zombro and Holmes (1993) showed
that the nonlinearly stable orbits of the problem re-
main stable under such perturbations. Accordingly,
the circular orbits corresponding to the cases (i) (for
L2 >

√
2αJ), (ii), and (iv) (for re = re,2) keep their

stability.��

Remark 5.2. There are perturbations of dif-
ferent nature which do not affect the nonlinear sta-
bility of the given stable equilibrium orbits. The dif-
fusely re-emitted radiation pressure constitutes such
an example.

Remark 5.3. The ”equatorial” relative equi-
librium solutions are not necessarily circular trajec-
tories. One sees that for the cases (i) (with L2 <√

2αJ) and (vi) they also can reduce to a rest (L = 0)
with respect to the central body.

Remark 5.4. Taking into account the equiv-
alence between the ”equatorial” generalized J2 prob-
lem and the Schwarzschild problem, the relative equi-
librium orbits are the same for the two models. The
latter model was investigated by Stoica and Mioc
(1997), who obtained the global flow and pointed
out the relative equilibria, with the same stability
features as in the generalized J2 problem. However,

the important results stated by Theorem 5.1 and Re-
mark 5.2 cannot be recovered in the quoted paper.

REFERENCES

Belenkii, I.M.: 1981, Celest Mech. 23, 9.
Brouwer, D., Clemence G.M.: 1961, Methods of Ce-

lestial Mechanics, Academic Press, New York,
London.

Diacu, F., Holmes, P.: 1996, Celestial Encounters.
The Origins of Chaos and Stability, Princeton
University Press, Princeton, N.J.

Elmabsout, B.: 1988, Celest Mech. 41, 131.
Elmabsout, B.: 1990, Celest Mech. 49, 219.
Elmabsout, B.: 1994, Dyn. Stabil. Syst. 9, 305.
Elmabsout, B.: 1996, Rom. Astron. J. 6, 61.
Maddocks, J.: 1991, IMA J. Appl. Math. 46, 71.
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Originalni nauqni rad

Za jednu veliku klasu konkretnih astro-
nomskih situacija modelirano je kretaǌe ne-
beskih tela u dinamiqkim sistemima za koje
va�i potencijalna funkcija α/r+εU (r = ras-
tojaǌe izme�u qestica, α = realna konstanta,
ε = realni mali parametar, U = poreme�ajni
potencijal). U ovom se radu istra�uje neli-
nearna stabilnost relativno uravnote�enih

orbita koje odgovaraju takvom potencijalu ko-
riste�i jednu maǌe uobiqajenu metodu a koja
spaja tehniku blok- dijagonalizacije i postu-
pak svo�eǌa. Test istiqe izvesne nelinearno
stabilne orbite dok je neodre�en za ostale
ravnote�e. Nelinearno stabilne orbite os-
taju stabilne pri svakom poreme�aju koji za-
dr�ava konzervisani momenat.
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