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SUMMARY: An integrated distribution function is derived for visual double
stars according to the magnitude difference ∆m between the components. For this

purpose the author uses a sample of 1626 double stars with ∆m ∈ [0m − 4m]. The
increment of the descriptive distribution function for an arbitrary increment of the
variable ∆m is also determined.

1. INTRODUCTION

The double-star statistics is a badly solvable
task. There are no reliable indicators concerning
the binary-system distribution in mass or orbital ele-
ments and also their spatial distribution does not dif-
fer from that of other stars of the galactic field. All of
this imposes a conclusion that there are no ”Double
Star Populations”, homogeneous in a selected char-
acteristic (physical, kinematical or geometric). Of
course, the division into visual, spectral, eclipse or
close binaries is not the topic here.

On the other hand, the observational mate-
rial concerning the double stars enables the deriv-
ing of empirical relations suitable for testing of the-
oretical star models (with or without rotation ef-
fects), as well as for examining the stability of stel-
lar atmospheres. In this connexion the most am-
ple application belongs to the ’mass–luminosity’ re-
lation (Harris et al., 1963; McCluskey and Kondo,
1972; Popović and Angelov, 1972; de Jager, 1980;
Angelov, 1993a; Angelov, 1993b). In view of the
correlation (log L, logM). (logM, Mb), as well
as (logM, MV ), one should expect a statistical de-
pendence between the magnitude difference and the
mass relation of the double-star components.

In other words the distribution of double stars
in magnitude difference of the components may serve
as indicator of their distribution, for example, in the
mass ratio of the components. In this paper one
considers the possibility of deriving an integrated
distribution function for visual double stars in the
magnitude difference of the components. For this
purpose the author uses the observational material
(Zverev, 1979) on which the Belgrade Visual-Double-
Star Catalogue (Sadžakov and Dačić, 1990) is based.

2. THE STRUCTURE OF OBSERVATION-
AL MATERIAL

The statistical sample contains 1626 visual do-
uble stars with magnitude difference between the
components within 0m − 4m. Let d be the incre-
ment in the variable ∆m = m2 − m1, and N(x) the
number of systems with ∆m ≤ x. For the purpose
of calculating the relative change ∆N/N for an ar-
bitrary value of d a new function will be defined:

F (x + d, x) =
N(x + d)

N(x)
. (1)
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Since (x + d) belongs to the actual interval of ∆m,
the highest value of variable x is xm = 4.0 − d, d ∈
[0.1, 4.0]. The empirical dependence F (x + d, x) is
illustrated in Fig. 1. The lower limit of this interval
is determined by F (x + 0.1, x), xm = 3.9, the left
hand one by the values F (d, 0), and Fmax = F (4, 0).

Fig. 1. Empirical distribution F (x + d, x) in the
sample of 1626 visual double stars.

3. ANALYSIS AND CONCLUSION

For describing the empirical distribution F the
following correlation is used:

log F =
n∑

i=0

ci(log x)i ,

with coefficients ci as functions of the increment d.
Already at n = 2 a very good approximation is achi-
eved. Here will be used the linear dependence:

log F = c0 + c1 log x (2)
illustrated in Fig. 2 (the linear relation is less reliable
with d > 2.5 though there is a trend of preserving
the direction coefficients for d = 2.5).

The coefficients c0 and c1 can be represented
as

ci =
m∑

k=0

cikdk , i = 0, 1.

The ci values are presented in Fig. 3, whereas the
solid lines corresponding to a quadratic dependence
ci(d):

c0 = 0.03 + 0.30 d− 0.06 d2,

c1 = −0.05 − 0.60 d + 0.13 d2.
(3)

Fig. 2. Linear correlation ’log F (x+ d, x) – log x’,
d ∈ [0.1, 2.5] — relation (2).

Fig. 3. Coefficients ci(d) in relation (2).

Now, relying on (2) we have:

F (x + d, x) = 10c0xc1 , x, d ≥ 0.1. (4)

The interval of numerical values of this function (Fig.
4) is a description of the observed interval in Fig. 1
for x ≥ 0.1.

The boundaries of distribution (4), i. e. boun-
daries of the region in Fig. 4 will be determined. The
lower limit is the function F (x + 0.1, x) with ci(0.1)
from (3). Thus

F (x + 0.1, x) = 1.15 x−0.11. (5)

This function determines the location of the empir-
ical boundary in Fig. 1 with a relative error under
10 %.
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Fig. 4. Descriptive distribution F (x + d, x) for
x ≥ 0.1, d ≤ 2.5.

The left hand limit is specified by

F (0.1 + d, 0.1) = 10c0−c1 ,

and according to (3)

c0 − c1 = a0 + a1d − a2d
2,

a0 = 0.08, a1 = 0.90, a2 = 0.19.

One has

F (0.1 + d, 0.1) = A exp
[−λ(d − B)2

]
, (6)

with

A = exp
[(

a0 +
a1

4a2

)
ln 10

]
= 14,

B =
a1

2a2
= 2.4, λ = a2 ln 10 = 0.44.

Unfortunately, the left hand limit is determined only
for d = 2.4 (relative error of 2 % for d = 0.1 increases
to 15 % for d = 2.4).

The upper boundary in Fig. 4 is specified by
the values of function (4) for x = xm, d ≤ 2.5. In
view of Fig. 2 and the correlation (2) for d > 2.5 it
will be assumed that the boundary within xm < 1.4
slightly deviates from its position in Fig. 4. In other
words, the equation of the upper boundary line is
approximatively

F (xm + d, xm) =
N(4)

N(xm)
, xm ∈ [0.1, 3.9],

or according to (4):

N(x) = N(4) · 10−c0(d)x−c1(d), d = 4 − x. (7)

On the other hand the boundary ’hyperbole’ indi-
cates the dependence

F−1(x + d, x) =
j∑

i=0

bix
i ,

yielding for j = 2:

N(x)
N(4)

= 0.04 + 0.35 x− 0.023 x2 . (8)

With N(4) = 1626 the function N(x) according to
this relation, or according to (7) with c0, c1 from
(3), is presented in Fig. 5. It is seen that the approx-
imation of empirical N(x) values is good for x ≥ 1
(relative deviation is less than 2 %), but somewhat
poorer for x < 1 (due to using ci(d) only d = 2.5,
x ≤ 1.5).

Fig. 5. Integrated distribution function N(x) for
visual double stars with ∆m ≤ x ∈ [0.1, 3.9].

In any case the relation (4) enables the es-
timating of the number of visual double stars with
∆m ≤ x + d, d = 4 − x, from the observed number
of these systems with ∆m ≤ x, x ∈ [0.1, 3.9].
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Izvodi se integralna funkcija raspode-
le vizuelnih dvojnih zvezda u odnosu na raz-
liku magnituda komponenata ∆m. U tom ciǉu
koristi se uzorak od 1626 dvojnih zvezda sa

∆m ∈ [0m − 4m]. Odre�uje se i priraxtaj
opisne funkcije raspodele za proizvoǉan pri-
raxtaj promenǉive ∆m.
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